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Abstract: The problem of automatically constructing features for use in a learned
evaluation function is visited. Issues of feature overlap, independence, and coverage
are addressed. Three algorithms are applied to two tasks, measuring the error in the
approximated function as learning proceeds. The issues are discussed in the context
of their apparent effects on the function approximation process.

1 Introduction
The use of an evaluation function has become a mainstay in building decision-making com-

ponents of larger systems. Many approaches have been devised for learning such an evaluation
function while the system performs its tasks. As learning progresses, the evaluation function pre-
sumably improves at estimating the value of each element that it evaluates. Thus, the learned
evaluation function approximates the true function that one would like to have in hand. Of central
interest is how to formulate this approximation improvement process in a way that attempts to
optimize several important criteria. A critical part of this process is to manage the set of features
that are used to express the approximation.

The context in which the evaluation function is used and trained is largely immaterial for the
discussion here. Typically, one would expect that the evaluation function learning is embedded
within a system that is gaining experience through actual or simulated use. We can safely ig-
nore this outer embedding here. However, one must note that there can be important interactions
between function approximation and behavior, when behavior depends on the current evaluation
function. For example, in reinforcement learning, the evaluation function, also known as a value
function, often represents the discounted reward that one can expect to receive when proceeding
from a certain state. However, if one makes each decision in a greedy manner, by making the
apparently optimal choice, then certain states (elements of the domain of the evaluation function)
are seen more often than others. As the evaluation function changes over time, the probability
distribution over the domain will likely change with it.

Various methods for balancing the need to explore suboptimal states and exploit optimal states
have been studied at length in the reinforcement learning community. With respect to the function
approximation process, the essence of the interaction between the current approximation and the
behavior is that the target function to be approximated appears to be non-stationary. Thus, one
must ensure that a function approximation process can track a changing target function, which
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means that all representable approximations must remain reachable during learning. The discus-
sion focuses on the stationary function approximation problem, taking this proviso into account.

The function approximation problem considered here is the following: given a finite domain
X, where each x � X is a vector of Boolean values, and given a stream of point estimates point
estimate

�
xi � vi � , find a function v̂ : X � ℜ that minimizes mean-squared error, learning time, and

space consumption. The primary concern is to minimize error, but for a given level of error, one
wants to use as few resources as possible. The Boolean domain admits many difficult functions.
For example, the game of Checkers has 32 squares of no more than five possible values each,
which can be encoded in a straightforward manner using 152 Boolean variables. More generally,
a discrete variable with a value set of size n can be recoded as n propositional variables. It is also
often practical to convert a real-valued variable to a set of discrete intervals, each of which can
be converted to a Boolean variable. CMACs (Albus, 1981) and other discretization techniques
have been used frequently to provide Boolean encodings for real-valued variables. There are many
techniques that operate in the Real domain, but our interest here is restricted to the Boolean domain,
which nevertheless contains many useful target functions that one would like to be able to learn.

2 The Need for Features
It is well known that it is typically very difficult to find an accurate approximation directly

in terms of the base-level Boolean variables. The functions to be learned over such a domain are
typically highly irregular with respect to the models that are often considered. For small domains,
a lookup table with one cell per domain element can work very well. However, for d Boolean
variables, one needs a table of 2d cells, so this approach does not scale well to large numbers of
Boolean variables. One can think of a lookup table of this kind as an unbiased function approx-
imator. However, even when one can afford the space for a table, one must visit each cell often
enough to attain a good estimated for the value of the function at that point (cell). Using a lookup
table in this manner amounts to rote learning, which is devoid of generalization. Without a lookup
table, how can one construct an approximation of high accuracy?

A common approach is to introduce an intermediate representation, specified as a set of fea-
tures. In the discussion here, the term feature refers to a computable function of the base-level
variables. In order to avoid confusion, the term input feature, frequently used in the literature, is
replaced by base level variable. Given a vector of features f, a domain element x is mapped to a
vector of feature values, and v̂ maps a vector of feature values to a real value. The function ap-
proximator needs to construct features to include in f, and it needs to delete features from f. Given
a particular extant f, the approximator needs to combine the feature values numerically so that v̂ is
computable. The features of f recode the base-level variables so that fitting a model to the instances
as mapped by f is easier to do.

Feature construction and feature selection are dual problems. In principle, one could construct
an approximation in which all possible features were represented explicitly. Then one could either
remove features selectively, or mark each feature as being ‘in’ or ‘out’. This would have the
flavor of a feature selection problem. Alternatively, one could start with no features, and then
subsequently construct any needed feature or delete any existing feature not currently needed.
This would have the flavor of a feature construction problem. However, these are just two views of
the same problem: deciding which features to use in the approximation. For simplicity, the feature
construction view is adopted here.
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3 Feature Spaces
There are many ways in which the computed feature values could be combined to compute the

estimated value of the function for a domain element. Many forms of combination can be restated
as a linear combination of a vector W of real-valued weights and the vector of feature values,
and this is the form that is discussed below. Although this form may appear to limit the space of
describable evaluation functions, it is quite useful, and should be seen as providing a context in
which to find a good set of features for representing the approximation of the target function. The
function approximation problem becomes one of finding a good set of features, given that their
values will be combined linearly with a weight vector to estimate the value of a domain element.

The domain of each feature is the set of base-level Boolean variables, and the range of each
feature is the set � 0 � 1 � , for Boolean features, or the interval

�
0 � 1 � for sigmoid features. Given that

sigmoid function values are close to zero or to one at all points, except near the transition, the range
can be considered to be � 0 � 1 � for all the feature types under consideration here. For each feature,
its value is 1 if the domain element is covered by the feature, and its value is 0 otherwise. This kind
of feature is itself a nonlinear function over the Boolean domain. When the linear combination is
computed, a scalar is multiplied with the feature value, thus scaling it. Hence, each feature can be
seen as describing a set of domain elements that share a common intrinsic property, contributing
additively to the value of a domain element. The problem of finding good features becomes the
problem of finding useful intrinsic properties of the domain elements.

Several issues arise with respect to the set of features in the approximation. First, are the
features linearly independent? This has a direct impact on whether the weight updating algorithm
can find a weight vector W that globally minimizes the mean-squared error in the approximation.
Without linear independence, a weight updating algorithm is likely to become trapped at a local
minimum that is not a global minimum. Though becoming trapped at a local minimum may still
produce a useful evaluation function, one would rather avoid such a situation.

Second, are the features orthogonal? Orthogonal features form a basis for the instance space.
Consequently, the weights of such features adjust independently of each other, and learning be-
comes significantly faster. Given the range of the features described above, the orthogonality
condition implies the restriction that features should not overlap. When two features overlap, and
point estimates are received (serially) from within the domain of each feature individually, and
from within the intersection of the two features, then the weight corrections for the two features
interact. While this is often workable, learning is slowed compared to updating weights for two
features that do not overlap. This slowing is compounded as the number of overlapping features
increases. For d distinct Boolean overlapping features, there are 2d distinct regions of the domain.
The number of distinct regions, and the amount of overlap in each have a large effect on the number
of weight adjustments that are needed to minimize the function error, given those features.

Third, how large is the domain of each feature? This size has an effect on how quickly the
weight that corresponds to that feature will be adjusted. This is because the weight associated
with the feature is adjusted when the feature covers the observed domain element, and left alone
otherwise (by virtue of having value 0). For the moment, assume that every domain element of the
function is equally likely to appear in the observed point estimates. Then a feature with a larger
domain is more likely to have its weight adjusted than a feature with a smaller domain. The feature
with the smaller domain will probably take longer to reach its final value, given the influence of
the other features. While the uniform distribution over domain elements is unlikely, one would still
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expect to see a large number of the domain elements, and hence notice this effect.
Finally, what sets of domain elements can a feature be defined to cover? Thinking of the

function domain as a Boolean hypercube, one can define a feature as a hyperplane through the
cube, with domain elements on the positive side of the plane being covered by the feature, and the
rest being not covered. Any feature defined by a hyperplane that is either orthogonal or parallel to
all the axes is called an axis-parallel feature. Any feature that is defined by a hyperplane, whether
or not it is axis-parallel, is called an oblique feature. One could devise other methods to specify
a particular set of domain elements for a feature definition, but no such additional methods are
considered here.

4 Comparison of Three Function Approximation Algorithms
In order to gain some insight into how different algorithms for constructing features affect

learning, three such algorithms are compared here on two stationary function approximation prob-
lems. The primary concern is how quickly mean-squared error falls as training points are received
and used to update the approximation in a serial manner. A secondary concern is the size of the
approximation. How many features are there, and how complex is each one? In each case, the
number of bits needed to encode the approximation is estimated, providing a common basis for the
size comparison.

4.1 DNC
Ash’s (1989) Dynamic Node Creation (DNC) adds a new feature in the form of sigmoid

function of a linear combination of the base level variables. The sigmoid function serves the
purpose of providing a threshold, but it is differentiable, which helps the feature weight adjustment
process. A feature covers those domain elements for which the feature has a value near one, and
excludes those elements for which the feature has a value near zero. These features are also known
as the hidden units of an artificial feed-forward network. For the problem considered here, the
network output value is a linear combination of the feature values.

Each feature is defined by an oblique boundary. The features also overlap. DNC uses gradient
descent to propagate the error in the approximation to the individual features, and again to the
weights of each feature. Adjusting the weights of the linear combination that defines the feature
corresponds to changing the definition of that feature, which can also be seen as deleting one
feature and adding another. The features that are created are dependent on the output weights.
As a result, the error surface for the function being approximated has local minima, in which the
function approximation algorithm can become trapped.

When the mean-squared error in the approximation asymptotes at too high a level, the algo-
rithm adds a new feature. In our implementation, the weights within a new feature that correspond
to the base-level variables are initialized to 0. Therefore, each new feature value is initially 0.5 on
the threshold of the sigmoid feature. The weight for this feature that is used in the linear combi-
nation of the approximation is also initialized to 0, which means that the new feature makes no
initial contribution to the approximation. This has the nice property that adding a new feature has
no immediate effect, and the new feature comes to contribute to the approximation smoothly over
time as it is tuned in. Note that the weight initializations to 0 are different from Ash’s use of small
random values. Random values are not needed here, and the algorithm produces repeatable results
for the same stream of observations.
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4.2 ELF
The ELF algorithm (Utgoff, 1996) constructs each feature as a Boolean function of the base-

level variables. The Boolean function is represented as a pattern, and it covers only those domain
elements that match the pattern. Each component of a pattern has either the value ‘#’ or the value
‘0’. A ‘#’ matches either of the possible values of the corresponding base-level variable, while a ‘0’
in the pattern matches only a ‘0’ (False) value. The pattern of all ‘#’ covers every domain element
because the pattern matches any domain element at every component. The pattern of all ‘0’ covers
the one element in which all the base-level variables have value ‘0’. One pattern is strictly more
general than another if and only if it covers all the domain elements covered by the other.

This pattern language is somewhat unusual because it can specify that a base-level Boolean
variable must have value ‘0’, but not that it must have value ‘1’. Nevertheless, the pattern language
is sufficient to describe any evaluation function over the domain. Consider a trivial domain of one
Boolean variable. The pair of features ‘#’ and ‘0’ is sufficient because the feature ‘0’ covers just
one element, and the feature ‘#’ covers both elements. One can assign a weight to the ‘#’ feature
that is correct for the ‘1’ element, and one can assign a weight to the ‘0’ feature so that it is correct
for the ‘0’ instance, given that the ‘#’ feature also covers it, and has its own weight. This argument
extends to any number of Boolean variables. There is no need for a ‘1’ in this pattern language.
The boundaries of an ELF feature are axis-parallel.

When a training point is presented to the ELF algorithm, it takes two steps. First it updates
the adjustable weights of the approximation, and then it updates the features in f as necessary. The
weights are updated using the Widrow-Hoff rule (Widrow & Hoff, 1960) for iteratively minimizing
the mean-squared error of the evaluation function. One computes an amount by which to alter the
weights of those features that matched the instance. The update rule takes this form here because
the features evaluate individually to 0 or 1. The amount by which to adjust each weight is the error
divided by the number of features that matched, multiplied by a stepsize parameter α that is fixed
at 0.1.

Initially, the function approximation consists of the one most general feature, with a weight
of 0. This initial approximation returns 0.0 for every element. As point-estimates are observed, the
single weight of the single feature is adjusted in an attempt to minimize the mean-squared error.
This amounts to trying to fit the points with a constant function. By itself, this would not be very
good, but one can gather useful information while this vain attempt at fitting is taking place, and
then use that information to add a useful feature that will help subsequent attempts.

While ELF is attempting to adjust the feature weights, initially just the one weight, it accu-
mulates the error that is associated with each bit (base-level Boolean variable) being on (true) in
an instance. With each feature, ELF maintains a separate vector of bit-errors that are accumulated
by attributing the amount of correction that has been applied to the feature weight to each of the
‘#’s in the feature pattern whose corresponding base-level variable was true. This information is
of central importance to the procedure for updating the features, but plays no role in updating the
feature weights. This is much like taking an X-ray picture. One bombards the X space with error,
which paints a picture as defined by the accumulated bit errors. These errors provide very use-
ful information about those subsets of the domain to which one would like to be able to assign
different values.

Consider a simple illustration. Imagine that the space of domain elements is as depicted by
the Venn diagram shown in Figure 1. The points are not shown, but some of their target values
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Figure 1. Target Values

are. Some points should evaluate to 6, while others should evaluate to 8, while still others should
evaluate to 2. As the weight of the most general feature f0 is repeatedly adjusted, suppose that it
settles to the value 5. Then the error associated with each of these points would be as shown in
Figure 2.
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Figure 2. Error with One Feature

Assume that a new feature f1 has been constructed that covers the 6s and the 8s. Through
subsequent point-wise error adjustments, suppose that the most general feature f0 takes on a weight
of 2, and the new feature f1 takes on a weight of 5. Now the new X-ray paints the error picture
shown in Figure 3. These errors are smaller than before.

Finally, assume that a new feature f2 has been constructed that covers the 8s and the 2s.
Through more point-wise error adjustments, suppose that f0 takes on a weight of 0, f1 takes on a
weight of 6, and f2 takes on a weight of 2. Now a new X-ray would be transparent, as shown in
Figure 4 because the error is uniformly 0.

To accomplish assigning one value to some instances and not others, one constructs a new
feature that covers just those instances. This is done by identifying the feature that is least able to
reduce the error that is attributed to it. In the initial approximation, there is the single most general
feature that is trying to fit all the points with a constant value. Even after other features come into
existence, the problem is still the same with respect to any one feature. The other features simply
transform the values of the instances they cover. Every feature tries to fit the points it covers with
a constant function. The feature contributes value 0 for those instances it does not cover, and the
value of its weight for all others. One needs to find the feature that is fitting its points least well,
given all the other features.

To identify the feature that fits its points least well, given the other features, one looks for the
feature with the greatest spread between the maximum and minimum bit-wise error. This value
is called the warp of a feature, because the bitwise errors indicate a desired direction in which to
move the weight of the feature. The feature is not actually warped, as it has only its single scalar
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Figure 4. Error with Three Features

weight, but the bitwise errors can be seen as stresses on the feature weight related to different
segments of the domain.

To change the set of features, ELF identifies the feature with the largest warp value, then iden-
tifies the ‘#’ in the feature whose accumulated error is most different from the mean accumulated
error for that feature. ELF then makes a copy of the feature, changes the ‘#’ to a ‘0’ in the copy,
initializes the weight of the new feature to 0, and adds it to the set of features in f. By initializ-
ing the weight to 0, adding the new feature has no immediate effect on the approximated function.
However, subsequent weight adjustments will use the new feature like any other, moving its weight
to a more useful value.

Every feature definition can be reached in principle, even though the only method for revising
a feature definition is to specialize it. Whenever a new feature is added, the accumulated bit errors
and several other bookkeeping variables are reset for all the features. However, the feature weights
w are left untouched. In addition, it would be quite useless to allow two or more features with
identical patterns, so ELF prevents this by not considering any specialization that would produce a
duplicate pattern.

The algorithm deletes a feature whose weight has been near to 0 for an extended length of
time. This is accomplished by considering features for deletion only at the same time that one
might specialize a feature. For a feature that has both its minimum and maximum observed weight
near 0, the feature is deleted. However, the most general feature is never deleted. This is critical, so
that any feature definition remains potentially reachable through specialization. Deletion is not an
important part of the algorithm. It is included to weed out useless features for the sake of efficiency.
The ELF algorithm would work without deletion, though slightly less efficiently. One would need
to omit this deletion mechanism to provide a guarantee that the algorithm will converge to 0.0 error
in the limit.

Because ELF specializes bits that are associated with the largest errors, those features that
need high magnitude weights tend to be identified earliest. This has the desirable effect of reducing
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Table 1. Artificial 410 Task

Target v
Weight Feature

-93.9527350 ffffedffff
-76.8096050 feeedfedde
74.4897340 ffef79d3fe
74.0239410 fefbefff5b
45.6317710 edfef7efdf

-30.6775870 ffffffffff
14.2437830 bfbfdfe6de

-10.0314590 ff3f3ff7fd
1.9227300 fffffdfffe

ELF v̂
Weight Feature

-93.9527350 ffffedffff
-76.8096050 feeedfedde
74.4897331 ffef79dffe
-74.4897259 ffef79dcfe
74.0239411 fefbeffffb
-74.0239410 fefbefffab
45.6317710 edfef7efdf
-30.6775867 ffffffffff
14.2437743 bfbfdfe6de
-10.0314592 ff3ffff7fd
10.0314589 ff3fcff7fd
1.9227299 fffffdfffe

error early in the learning process. As features are found that reduce error, the new errors that
emerge tend to be related to features that have smaller magnitude weights. The effect is to keep
reducing residual error. There is no random element of the algorithm itself. Given the same stream
of observed point-wise errors, the algorithm will produce the same result every time, which is
highly desirable in terms of understandability and reproducibility. The algorithm decides when
and where to add new features, based on need.

To illustrate ELF, the algorithm was embedded in a program that also includes a target function
v represented separately from the approximated function v̂. The target is in the same form that ELF
uses for its approximation. The program repeatedly samples a point at random from X, evaluates
it with the target v and then delivers the point estimate to ELF. This loop continues to execute until
a decaying average of the absolute errors drops below 10 �

6.
The target v and the final approximation v̂ are shown in Table 1, though 31 features all with

magnitudes below 10 �
4 have been omitted. A total of 63 features were created, with 20 of them

deleted, leaving 43 total features, 12 of which appear in the figure. Each feature is shown as its
weight and its pattern coded in hexadecimal, where ‘#’ is coded as bit-value 1 and ‘0’ is coded
as bit-value 0. The target function consists of 256 regions over a domain of 1,048,576 elements.
Comparing the features of v̂ with those of v, one sees that ELF found an approximation in terms
of the intrinsic properties in the target. There are three cases of a pair of features that collec-
tively match a single feature in the target. For example, ffef79dffe and ffef79dcfe in the
approximation collectively represent ffef79d3fe in the target.

A decaying average of the mean squared error is plotted in Figure 5, with the number of train-
ing points shown in tens of thousands. The error diminishes quickly, with revision of f continuing
long after the squared error has attained a low value. Each dot along the curve shows when some
feature was (copied and) specialized by one bit (changing a ‘#’ to a ‘0’). Each square shows when
some feature was deleted.

The components of the evaluation function (the feature weights) are shown in Figure 6. The x-
axis represents the number of training elements observed (in tens of thsousands), as it does for the
previous Figure 5. One can see how the weight of each feature changes over time. Dots along the
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same curve indicate that the feature has spawned multiple specializations, and not that the feature
itself has become very specialized. After a feature has been copied and specialized, the weights of
all the features continue to adjust through subsequent training.
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Figure 6. Feature Weights for Artificial Task

One sees that upon specialization, feature weights ‘travel’ until a new set of weights that min-
imize the squared error are attained. Often, many weights change at one time, due to sympathetic
movement of overlapping features. When a feature is (copied and) specialized, the new specialized
feature has an initial weight of 0. These new features are clearly visible in the graph. By looking
at the dots on the curves, one can find the new feature that is born at that time.

One can observe two characterstics in the figure. First, the features with larger magnitude
weights tend to be found earlier than those with smaller magnitude weights. Second, specializa-
tion often occurs repeatedly on the same feature. One can see several consecutive specializations
occuring on the same feature, by finding a succession of feature creations. One can speculate that
as the feature begins to cover instances that share an intrinsic property, the bit errors are more
clearly attributable to certain bits, making those features least adequate under the stress measure
described above.

4.3 RT
The RT algorithm is somewhat similar to the ELF algorithm. One major difference is that RT

instead constructs features that do not overlap. This is done by using a slightly different pattern
language. A ‘#’ matches either True or False in the corresponding Boolean variable. A ‘0’ matches
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only False, and a ‘1’ matches only True. Presence of a ‘1’ in the pattern language differs from ELF.
The set of features is initialized with the most general feature. When it becomes time to specialize
a feature, two new features are constructed, and the parent feature is deleted. In one of the new
features, the pattern is that of the parent, except that the identified ‘#’ has been changed to a ‘0’.
Similarly, in the other new feature, the ‘#’ has been changed to a ‘1’. The weights for the two
new features are initialized to that of the parent. These two features that have replaced the parent
are now free to have their weights adjusted independently. Indeed, every element of the domain
is always covered by exactly one feature. This is good for orthogonality, but it loses the idea of
identifying intrinsic properties.

This strategy for modifying the set of features used in the approximation can be seen as a
method for building a variable-resolution lookup table. Variable resolution methods for discretiz-
ing continuous variables have been used successfully in reinforcement learning tasks (Chapman &
Kaelbling, 1991; Moore & Atkeson, 1995). This strategy can also be seen as forming a regres-
sion tree whose leaf values adjust continually to observed errors at that leaf (Breiman, Friedman,
Olshen & Stone, 1984).

Because the features do not overlap, the RT algorithm cannot produce duplicate features.
Because there are no feature interactions, the bit-errors for each feature are not cleared when a
feature is split into two, except that the bit-errors for the two new features are initialized to 0.0.

4.4 TicTacToe
The TicTacToe function is defined over the 4,520 states that are reachable during legal play.

Every position is expressed from the point of view of the player that is about to move. A position in
which a win has been achieved or is attainable has value 10.0, a draw has value 0.0, and a position
that is lost has value -10.0. The fact that the function comes from a sequential problem solving
task is irrelevant here because it is treated simply as a stationary function approximation problem.
This is done by uniformly sampling the 4,520 points (with known target values) repeatedly in an
offline manner.

The concern is how various aspects of the feature construction process affect error reduction in
the approximation. A regression tree based on minimizing an information criterion contains 1,467
leaves, which suggests an upper bound on the number of features needed for the approximation.
As represented here, there are 27 base level variables for the TicTacToe function. This is because
each of the nine squares can have one of three possible values. More compact codings are possible,
but this one is straightforward.
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Figure 7. TicTacToe Error Graph
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The number of features constructed by each algorithm, and the number of bits necessary
to encode each feature are quite different. DNC constructed a function with 37 features. The
representation for each feature contains 27 weights and there is also one more weight for the final
linear combination. Assuming that each weight can be represented as a 32-bit floating point, the
approximated function can be encoded in

�
27 � 32 � 32 � � 37 � 33 � 152 bits.

ELF constructed 282 features, and deleted 26, for a net total of 256 features. Each feature can
be encoded using one bit for each base level variable, and a real-valued weight. Using the same
convention as above, the approximated function can be encoded in

�
27 � 1 � 32 � � 256 � 15 � 104

bits.
The function constructed by RT was much larger, consisting of 5,245 features. Features are

similar in size to those of ELF, except that a pattern for RT requires twice as many bits as a pattern
for ELF. The encoding for the RT approximation takes

�
27 � 2 � 32 � � 5 � 245 � 451 � 070 bits. Note

also that there are 5,245 features over a domain in which only 4,520 different states (points) can
occur. Clearly RT is overspecializing, which means the criterion for when to split a feature is too
aggressive.

4.5 Eight Puzzle
The eight-puzzle is a sliding tile puzzle that contains eight square tiles in a flat space that could

accommodate nine tiles in a 3x3 arrangement. By having just eight tiles, there is an empty location,
into which one can slide one of the adjacent tiles. There are 181,440 states, including a single goal
state consisting of all tiles in row order (the tiles are numbered 1-8), with the empty location in
the lower right corner. The longest path to this goal state requires 31 steps, providing 32 different
values in the range of the target function, which contains 25,077 local maxima (states from which
every decision is equally good) and one minimum. A regression tree based on minimizing variance
of its blocks contains 114,114 leaves. This function is apparently difficult to compress.
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Figure 8. 8-puzzle Error Graph

The number of base-level variables for this function is 81, because each of the nine locations
can have one of nine possible values. More compact encodings are possible, but this one is straight-
forward. DNC constructs a function of 15 features, which needs

�
81 � 32 � 32 � � 15 � 39 � 360 bits

for the encoding. ELF constructs 222 features and deletes 25, for a net total of 197 features. This
approximation can be encoded in

�
81 � 1 � 32 � � 197 � 22 � 261 bits. RT constructs a function of

14,065 features, and the encoding requires
�
81 � 2 � 32 � � 14 � 065 � 2 � 728 � 610 bits.
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4.6 Discussion
The three algorithms were each run on both tasks. Within each problem, the sequence of

sampled points was identical for each algorithm. For the TicTacToe function, the reachable points
in the domain were sampled randomly according to a uniform probability distribution. For the
8-puzzle function, the points were sampled from optimal trajectories, with the correct target value
being used for each point. In this formulation, the 8-puzzle is a stationary function approximation
task, but with a non-uniform probability distribution over the domain. Only the starting point of
each trajectory is sampled randomly and uniformly from the domain. These differences in the
sampling distributions (for TicTacToe versus 8-puzzle) occur due to the way these applications
were implemented previously, not because of a deliberate design choice made here.

For TicTacToe, Figure 7 shows that DNC and ELF become slow at reducing the error. Both
algorithms produce features that overlap. DNC has features that are not linearly independent, so
an additional cause of the slowed rate of error reduction may be due to reaching a local minimum
with the current feature set. ELF has features whose coverage is individually decreasing as points
are seen. Although one can expect ELF to converge to 0.0 error in the limit, the feature overlaps
and shrinking feature coverage work against that, causing the rate of error reduction to dwindle.
DNC suffers the same fate, due to feature overlap and linear dependence. DNC does a better job of
error reduction, suggesting that oblique features are more useful than axis-parallel features for this
function. The same figure shows that the RT algorithm reduces error very quickly. It does however
create a large number of features, which slows execution. When each of the runs was halted, DNC
had 37 features, ELF had 256 features, and RT had 5,245 features.

For the 8-puzzle, Figure 8 shows that all three algorithms reduce the approximation error
quite quickly. RT reduces error most quickly, but creates 14,065 features. DNC and ELF come
much closer to RT as learning progresses, but still trail. However, each of DNC and ELF use many
fewer features than RT in the process. One can surmise that DNC and ELF have each identified
intrinsic properties. When halted, DNC had 15 features, and ELF had 197 features. Given the
similar accuracies of DNC and ELF, it appears that oblique features have little apparent advantage
over axis-parallel features for this particular function. As was observed for the TicTacToe function,
the rate at which DNC and ELF reduce error becomes very slow.

One real-world task that we have studied is the instruction scheduling task. The goal is to
learn a greedy evaluation function for picking the instruction that should be scheduled next for a
basic block during the code-generation phase of code compilation. The task is known to be hard,
and it is becoming increasingly important in the context of highly pipelined architectures. It was
possible to learn to produce instruction schedules with running times within 10% of optimal on a
DEC Alpha architecture. The function that needs to be learned in this case is much simpler than
either of the tasks chosen as illustrations above.

5 Related Work
A variety of constructive methods have been devised for classification problems. Several

algorithms have been designed for constructing networks of thresholded logic units, by adding
boundaries that correct for misclassified examples (Parekh, Yang & Honavar, 1997). It should be
possible to extend these techniques to function approximation problems.

A meiosis network (Hanson, 1990) is a feed-forward network in which the variance of each
weight is maintained. For a hidden unit (feature) that has one or more weights of high variance,
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the unit is split into two. The input weights that define the feature, and the output weight for the
linear combination are altered so that the two units are moved away from their means in opposite
directions.

Wynne-Jones (1992) presents an approach called node splitting that detects and attempts to
repair an inadequate hidden layer (set of features) of a feed-forward artificial neural network. The
system detects when the hyperplane of a hidden unit (weights of an oblique feature) is oscillating,
indicating that the unit is being pushed in conflicting directions in feature space. Such a unit is
split into two units, and the weights are set so that the units are moved apart from each other along
an advantageous axis. Although this approach sometimes works well, Wynne-Jones observes that
the units often work back toward each other instead of diverging.

Fahlman and Lebiere’s (1990) cascade correlation method constructs a new hidden unit (fea-
ture) and freezes its defining weights. The original input variables and the newly constructed unit
become the input variables for the next layer. Thus, one adds a new feature and a new layer of
mapping at the same time. The algorithm alternates between adding a new unit/layer, and adjust-
ing the weights for the output units. The algorithm has produced good results when applied to
classification tasks.

Fritzke (1993) has developed ‘growing-cell-structures’, an improvement to self-organizing
feature maps. The algorithm builds an approximation in the form of an interpolator, adding refine-
ment and precision when and where needed.

The RT algorithm is highly similar to Chapman and Kaelbling’s (1991) G algorithm. The G
algorithm splits the domain on Boolean variables that are deemed relevant to the function value by
a statistical test. Chapman and Kaelbling note that the G algorithm will fail when bits are irrelevant
in isolation, but relevant collectively. The RT algorithm will continue to split the space whenever
the error for a feature is too high. Chapman and Kaelbling suggest that perhaps good features
should be orthogonal, and therefore individually relevant.

5.1 Conclusions
There are several issues to consider when building a function approximator. The accuracy

of the approximation is typically of paramount importance, though it is worth noting that when
using an approximation to implement a decision-making component, one can tolerate error in the
approximation when it does not lead to errors in decision making.

With regard to oblique or axis-parallel features, one can see here, and in many other examples,
that oblique features can be very useful in building the approximation. Given that the set of axis-
parallel features is properly contained in the set of oblique features, it would seem obvious to use
oblique features. However, current methods for finding such features do not guarantee that those
features are linearly dependent, which is a significant disadvantage.

Whether the features overlap has an important effect on the rate at which error is reduced. The
number of distinct regions over the domain grows exponentially with the number of features. One
can conclude that feature overlap is detrimental. On the other hand, if one is attempting to identify
intrinsic properties, then overlap is necessary. When overlap is precluded, the features become
orthogonal, and can be adjusted independently. One can reduce error more quickly by avoiding
overlap, but at the expense of not finding intrinsic properties, and at the expense of requiring more
total features. It may well be that one should first find useful instrinsic properties (as with DNC or
ELF), and only then proceed to partition the resulting function (as with RT).

In order for these algorithms to be useful for reinforcement learning techniques, they should
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be able to track concept drift. DNC and ELF theoretically have this property. Further investigation
is needed in order to establish how well they behave in practice. RT commits to a partition of the
domain, so it is less suitable for non-stationary tasks. It would track the drift, but with a potentially
rigid and therefore poor partition of the domain.

Much more exploration of constructive function approximation methods is needed. It would
be useful to design a constructive method that produces oblique features that are linearly inde-
pendent. It would be useful if the amount of feature overlap could be controlled dynamically, so
that slowed learning and creating a large number of features can be balanced automatically. None
of the algorithms discussed here or elsewhere truly solves the feature construction problem. A
better understanding of the tradeoffs is needed, as well as better control of these tradeoffs in the
constructive function approximation algorithms that are to be used in practice.
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