
Incremental Induction of Decision Trees1

Paul E. Utgoff utgoff@cs.umass.edu
Department of Computer and Information Science, University of Massachusetts, Amherst, MA 01003

Abstract: This article presents an incremental algorithm for inducing decision trees
equivalent to those formed by Quinlan’s nonincremental ID3 algorithm, given the
same training instances. The new algorithm, named ID5R, lets one apply the ID3
induction process to learning tasks in which training instances are presented serially.
Although the basic tree-building algorithms differ only in how the decision trees are
constructed, experiments show that incremental training makes it possible to select
training instances more carefully, which can result in smaller decision trees. The ID3
algorithm and its variants are compared in terms of theoretical complexity and empir-
ical behavior.

Keywords: Decision tree, concept learning, incremental learning, learning from examples.

1 Introduction
The ability to learn classifications is fundamental to intelligent behavior. Concepts such as

“dangerous”, “edible”, “ally”, and “profitable” are learned routinely and are essential to getting
along in the world. During the last two decades, researchers have developed a number of algorithms
for automated concept acquisition. These include Meta-Dendral (Buchanan & Mitchell, 1978),
which learned the concept of a chemical bond that is likely to break in a mass-spectrometer, and
AQ11 (Michalski & Chilausky, 1980), which learned to diagnose soybean disease according to
observable symptoms.

One dimension along which concept-learning algorithms can be distinguished is whether they
operate in an incremental or nonincremental mode. In the latter case, the algorithm infers a concept
once, based on the entire set of available training instances. Nonincremental algorithms include
Vere’s THOTH (1980), Michalski’s INDUCE (1983), and Quinlan’s ID3 (1983, 1986). In the
incremental case, the algorithm revises the current concept definition, if necessary, in response
to each newly observed training instance. Incremental algorithms include Mitchell’s Candidate
Elimination Algorithm (1978), Schlimmer and Granger’s STAGGER (1986b), Fisher’s COBWEB
(1987), and Gallant’s Pocket Algorithm (1988). A nonincremental algorithm is appropriate for
learning tasks in which a single fixed set of training instances is provided; an incremental algo-
rithm is appropriate for learning tasks in which there is a stream of training instances. For serial
learning tasks, one would prefer an incremental algorithm, on the assumption that it is more effi-
cient to revise an existing hypothesis than it is to generate a hypothesis each time a new instance
is observed. The cost of generating hypotheses from scratch may be too expensive to apply a
nonincremental method to a serial learning task.

This article presents an algorithm for the incremental induction of decision trees. The method
infers the same decision tree as Quinlan’s (1983, 1986) nonincremental ID3 algorithm, given the

1The correct citation for this article, (C) 1989 Copyright Kluwer Academic Publishers, is: Utgoff, P. E. (1989).
Incremental induction of decision trees. Machine Learning, 4, 161-186.



Incremental Induction of Decision Trees 2

Table 1. The basic ID3 tree construction algorithm.

1. If all the instances are from exactly one class, then the decision
tree is an answer node containing that class name.

2. Otherwise,

(a) Define abest to be an attribute with the lowest E-score.

(b) For each value vbest � i of abest, grow a branch from abest to a deci-
sion tree constructed recursively from all those instances with
value vbest � i of attribute abest.

same set of training instances. This makes it practical to build decision trees for tasks that require
incremental learning. The algorithm also makes it practical to choose training instances more
selectively, which can lead to a smaller decision tree.

The following section reviews decision trees and the ID3 algorithm. Section 3 explains the
need for an incremental algorithm, reviews Schlimmer and Fisher’s ID4 algorithm, and presents
a new incremental algorithm called ID5R. Section 4 provides a theoretical analysis of worst-case
complexity for four decision-tree algorithms, and Section 5 compares the algorithms in terms of
their empirical behavior. The last two sections summarize the main conclusions and discuss direc-
tions for further work.

2 Decision Trees
A decision tree is a representation of a decision procedure for determining the class of a given

instance. Each node of the tree specifies either a class name or a specific test that partitions the
space of instances at the node according to the possible outcomes of the test. Each subset of
the partition corresponds to a classification subproblem for that subspace of the instances, which
is solved by a subtree. A decision tree can be seen as a divide-and-conquer strategy for object
classification. Formally, one can define a decision tree to be either:

1. a leaf node (or answer node) that contains a class name, or

2. a non-leaf node (or decision node) that contains an attribute test with a branch to another
decision tree for each possible value of the attribute.

For a comprehensive discussion of decision trees, see Moret (1982) and Breiman, Friedman, Ol-
shen and Stone (1984).

Quinlan’s ID3 program induces decision trees of the above form. Each training instance
is described as a list of attribute-value pairs, which constitutes a conjunctive description of that
instance. The instance is labelled with the name of the class to which it belongs. To simplify the
discussion, it is assumed that an instance belongs to one of two classes: the positive instances,
which are examples of the concept to be learned (the target concept), and the negative instances,
which are counterexamples of the target concept. The algorithm can be applied to more than two
classes in a straightforward manner. In addition, it is assumed that attributes have discrete values.



Incremental Induction of Decision Trees 3

The complete ID3 algorithm, discussed in Section 5.3, includes a method for selecting a set of
training instances from which the decision tree will be built. For now the discussion focuses on the
basic problem of constructing a decision tree based on a given set of selected training instances.
Table 1 shows just the tree construction algorithm, here called the basic ID3 tree construction
algorithm, that is embedded within the complete ID3 algorithm. The set of attributes used to
describe an instance is denoted by A, and the individual attributes are indicated as ai, with i between
1 and the number of attributes, denoted

�
A

�
. For each attribute ai, the set of possible values for that

attribute is denoted Vi. The individual values are indicated by vi j, with j between 1 and the number
of values for attribute ai, denoted

�
Vi

�
. The E-score is the result of computing Quinlan’s (1986)

expected information function E of an attribute at a node. At a given node, let

p � number of positive instances
n � number of negative instances
pi j � number of positive instances with value vi j of attribute ai

ni j � number of negative instances with value vi j of attribute ai

Then

E � ai � � �
Vi

�
∑
j � 1

pi j � ni j

p � n
I � pi j � ni j �

with

I � x � y � �
�	�
 0 if x � 0

0 if y � 0� x
x 
 y log x

x 
 y
� y

x 
 y log y
x 
 y otherwise

Quinlan (1986) has pointed out that selecting an attribute with a lowest E-score is equivalent to
selecting an attribute with a highest information gain, defined as I � p � n � � E � ai � .

The E function is an information-theoretic metric based on entropy2 (Shannon, 1948; Lewis,
1962). This function estimates the amount of ambiguity in classifying instances that would result
from placing the attribute as a test at a decision node. The attribute with the lowest E-score is
assumed to give a good partition of the instances into subproblems for classification. Although the
algorithm is not guaranteed to find a smallest tree, experience has shown that it usually builds a
small decision tree that generalizes well to the unobserved instances. Quinlan (1986) has reported
an improved attribute selection metric, called the gain-ratio criterion, which compensates for the
fact that attributes with more values tend to be preferred to attributes with fewer attributes. This
improved metric is discussed in Section 5.3.

3 Incremental Induction of Decision Trees
ID3 is a useful concept learning algorithm because it can efficiently construct a decision tree

that generalizes well. For nonincremental learning tasks, this algorithm is often a good choice for
building a classification rule. However, for incremental learning tasks, it would be far preferable
to accept instances incrementally, without needing to build a new decision tree each time. This
section first reviews Schlimmer and Fisher’s ID4 algorithm, which was designed to learn decision
trees incrementally, and then presents a new incremental tree construction algorithm, named ID5R,

2See Watanabe (1985) for a historical perspective on applying the notion of physical entropy to information pro-
cesses.



Incremental Induction of Decision Trees 4

Table 2. The basic ID4 tree update procedure.

1. For each possible test attribute at the current node, update the
count of positive or negative instances for the value of that at-
tribute in the training instance.

2. If all the instances observed at the current node are positive
(negative), then the decision tree at the current node is an answer
node containing a ‘‘ � ’’ (‘‘ � ’’) to indicate a positive (negative)
instance.

3. Otherwise,

(a) If the current node is an answer node, then change it to a
decision node containing an attribute test with the lowest E-
score.

(b) Otherwise, if the current decision node contains an attribute
test that does not have the lowest E-score, then

i. Change the attribute test to one with the lowest E-score.

ii. Discard all existing subtrees below the decision node.

(c) Recursively update the decision tree below the current deci-
sion node along the branch of the value of the current test
attribute that occurs in the instance description. Grow the
branch if necessary.

that builds the same decision tree as ID3’s basic tree building algorithm from a given set of training
instances.

3.1 The ID4 Algorithm
Previously, Schlimmer and Fisher (1986a) designed an algorithm named ID4 to address the

incremental construction of decision trees. However, as shown below, there are many concepts that
are not learnable by ID4, even though they are learnable by ID3. The need for an incremental tree
induction algorithm, and the inadequacy of the ID4 algorithm in this regard, motivated the research
reported here. The ID4 algorithm is presented here in detail for two reasons. First, the algorithm
needs to be understood so that its inability to learn certain concepts can be explained. Second,
the mechanism in the ID4 algorithm for determining when to change the attribute test at a node is
included in the new algorithm ID5R, described in the next section.

As shown in Table 2, the ID4 algorithm accepts a training instance and then updates the
decision tree, which is kept as a global data structure. Step 1 indicates that all information needed
to compute the E-score for a possible test attribute at a node is kept at that node. This information
consists of positive and negative counts for each possible value of each possible test attribute at
each node in the current decision tree. For ease of discussion, let a non-test attribute be an attribute
that could be the test attribute at a node, but is not. From the information kept at a node, it is
possible to determine which attribute has the lowest E-score. If the current test attribute does not



Incremental Induction of Decision Trees 5

have the lowest E-score, the test attribute is replaced by a non-test attribute with the lowest E-score.
Because the counts have been maintained, there is no need to reexamine the training instances.

The complete ID4 algorithm also includes a χ2 test for independence, as described by Quinlan
(1986). The test helps prevent overfitting the training data, when noise is present, by preventing
replacement of an answer node with a decision node. To include the test, step 3 of the algorithm
is executed only if there is an attribute that is also not χ2 independent. Throughout this article, the
discussion focuses on the basic algorithms, omitting the χ2 test.

The ID4 algorithm builds the same tree as the basic ID3 tree construction algorithm only
when there is an attribute at each decision node that is clearly the best choice in terms of its
E-score. Whenever the relative ordering of the possible test attributes at a node changes during
training, step 3(b)ii discards all subtrees below the node. If the relative ordering does not stabilize
with training, then subtrees will be discarded repeatedly, rendering certain concepts unlearnable by
the algorithm. Such thrashing can be observed for concepts in which the decision tree must extend
three or more levels below the current node and in which there is no stable best test attribute for
the node.

For example, consider the concept of even-parity for three Boolean variables a, b, and c.
Because a three-level tree is needed and because any of the three attributes is equally good at the
root, small fluctuations in the E-scores during training will cause the test attribute at the root to
change repeatedly. If the eight instances are presented repeatedly in a fixed order (a simple and
fair sampling strategy), the tree will never stabilize at the root, rendering the concept unlearnable.
If the instances are sampled in a random order, then one must hope for a sequence that permits a
consistent tree to be found and never lost. Note that if one includes the χ2 test, the concept is still
unlearnable because all attributes at the root appear to be noisy.

3.2 A New Algorithm: ID5R
This section presents a new incremental algorithm, called ID5R, that is guaranteed to build

the same decision tree as ID3 for a given set of training instances. Effectively, this lets one apply
Quinlan’s nonincremental method to incremental learning tasks, without the expense of building
a new decision tree after each new training instance. ID5R is a successor of the ID5 algorithm
(Utgoff, 1988), described in Section 4.4. Like ID4, the ID5R algorithm maintains sufficient in-
formation to compute the E-score for an attribute at a node, making it possible to change the test
attribute at a node to one with the lowest E-score. However, ID5R differs in its method for chang-
ing the test attribute at a node. Instead of discarding the subtrees below the old test attribute, ID5R
restructures the tree so that the desired test attribute is at the root. The restructuring process, called
a pull-up, is a tree manipulation that preserves consistency with the observed training instances,
and that brings the indicated attribute to the root node of the tree or subtree. The advantage of
restructuring the tree is that it lets one recalculate the various positive and negative counts during
the tree manipulations, without reexamining the training instances.

Formally, define an ID5R decision tree to be either of:

1. a leaf node (or answer node) that contains

(a) a class name, and

(b) the set of instance descriptions at the node belonging to the class

2. a non-leaf node (or decision node) that contains



Incremental Induction of Decision Trees 6

Table 3. The ID5R tree-update algorithm.

1. If the tree is empty, then define it as the unexpanded form, set-
ting the class name to the class of the instance, and the set of
instances to the singleton set containing the instance.

2. Otherwise, if the tree is in unexpanded form and the instance is
from the same class, then add the instance to the set of instances
kept in the node.

3. Otherwise,

(a) If the tree is in unexpanded form, then expand it one level,
choosing the test attribute for the root arbitrarily.

(b) For the test attribute and all nontest attributes at the cur-
rent node, update the count of positive or negative instances
for the value of that attribute in the training instance.

(c) If the current node contains an attribute test that does not
have the lowest E-score, then

i. Restructure the tree so that an attribute with the lowest
E-score is at the root.

ii. Recursively reestablish a best test attribute in each sub-
tree except the one that will be updated in step 3d.

(d) Recursively update the decision tree below the current deci-
sion node along the branch for the value of the test attribute
that occurs in the instance description. Grow the branch if
necessary.

(a) an attribute test, with a branch to another decision tree for each possible value of the
attribute, the positive and negative counts for each possible value of the attribute, and

(b) the set of non-test attributes at the node, each with positive and negative counts for each
possible value of the attribute.

This form of decision tree differs from those of both ID3 and ID4 because it retains the training
instances in the tree. Accordingly, the tree must be interpreted differently. When using the tree to
classify an instance, the tree is traversed until a node is reached for which all training instances are
from the same class, at which point the classification is determined and an answer can be returned.
Such a node can be either a leaf or non-leaf node. In the latter case, there will be only one class
with a non-zero instance count.

This method for interpreting the tree structure allows the intended generalization without ac-
tually discarding the information in the training instances, which must be retained so that restruc-
turing remains possible. Call the leaf-node form of tree an unexpanded tree and the nonleaf-node
form an expanded tree. Note that this method for interpreting a tree means that the tree structure



Incremental Induction of Decision Trees 7

Table 4. The ID5R pull-up algorithm.

1. If the attribute anew to be pulled up is already at the root, then
stop.

2. Otherwise,

(a) Recursively pull the attribute anew to the root of each immedi-
ate subtree. Convert any unexpanded tree to expanded form as
necessary, choosing attribute anew as the test attribute.

(b) Transpose the tree, resulting in a new tree with anew at the
root, and the old root attribute aold at the root of each imme-
diate subtree.

underlying a tree’s interpretation may not be unique. The actual form of the tree could be the
unexpanded form or an expanded form with one or more superfluous attribute tests.

The instances at a node are described only by the attribute-value pairs that have not been
determined by tests above the node. This means that the instance descriptions are reduced by
one attribute-value pair for each attribute tested above in the tree. One might imagine that the
simplest approach would be to maintain the tree structure in fully expanded form. However, this
is inefficient in both time and space because at each non-leaf node all the counts for the non-test
attributes must be maintained.

Table 3 shows the ID5R algorithm for updating a decision tree. If the tree is in unexpanded
form and the instance is from the same class, then the instance is added to the set kept in the
node. Otherwise, the tree is expanded one level if necessary (choosing the test-attribute arbitrarily
because no counts of positives and negatives yet exist at the node), and the attribute-value counts
are updated for the test and non-test attributes according to the training instance. If the test attribute
no longer has the lowest E-score, the tree is restructured so that the test attribute is one with the
lowest E-score. If the tree was restructured then one recursively checks the subtrees that will not
be touched again during the tree update, restructuring them as necessary so that every test attribute
at a node has the lowest E-score at the node. Then the tree update continues recursively at the
next lower level, following the branch with the value that appears in the instance description. The
ID5R algorithm builds the same tree as the basic ID3 tree construction algorithm, given the same
instances and given the same method for breaking ties among equally good attributes.

Table 4 shows the algorithm for restructuring the decision tree so that the desired test attribute
is at the root. An immediate subtree of a node is a subtree that is rooted at a child of the node. To
transpose3 a tree at the root (level zero), the order of attribute tests from level zero to level one is
reversed, resulting in a regrouping of the level-two subtrees. Since the level-zero attribute value
counts are already known from the tree update that led to the pull-up, and the level-two trees are
not touched; only the counts for the level-one test and non-test attributes needs to be computed.
These are obtained directly by adding the counts from the level-two subtrees. Then the tree update
procedure continues recursively at the next level.

3The tree transposition in step 2b is equivalent to an operation described by Cockett (1987).



Incremental Induction of Decision Trees 8

Table 5. Training instances for the Quinlan (1983) example.

class height hair eyes
– short blond brown
– tall dark brown
+ tall blond blue
– tall dark blue
– short dark blue
+ tall red blue
– tall blond brown
+ short blond blue

3.3 An Illustration of the ID5R Algorithm
This section illustrates the ID5R algorithm, showing its behavior on eight serially presented

training instances given in Quinlan (1983). The instances, shown in Table 5, are each described
as a conjunction of three attribute-value pairs, using the attributes height, hair color, and color
of eyes. In the trees that are drawn below, the attribute and value names have been clipped to
three characters. Also, the positive and negative counts are shown as a bracketed ordered pair, e.g.
[positives, negatives].

For the first instance, (–, height=short, hair=blond, eyes=brown), the tree is updated to be
simply the leaf node:

–
(eyes=brown, hair=blond, height=short)

The second instance, (–, height=tall, hair=dark, eyes=brown), is also negative, so it is added to
the list of instances at the leaf node, giving:

–
(eyes=brown, hair=dark, height=tall)

(eyes=brown, hair=blond, height=short)

The third instance, (+, height=tall, hair=blond, eyes=blue), is positive, so the tree is ex-
panded, arbitrarily choosing attribute height as the test attribute. The positive and negative counts
are updated at level zero, and the non-test attribute eyes is found to have the lowest E-score. At the
moment, the tree is:

short [0,1]

–
(eyes=brown, hair=blond)

tall [1,1]

–
(eyes=brown, hair=dark)

height

so the attribute eyes must be pulled to the root. Note that the tree is in the process of being
updated, so level zero is based on three training instances while level one and below are based on
two training instances. When the update process is finished, the entire tree will be based on the
three training instances. The first step is to restructure the immediate subtrees so that eyes is the



Incremental Induction of Decision Trees 9

test attribute for each one. For the current tree, the subtrees are in unexpanded form, so they are
expanded, choosing attribute eyes as the test attribute. At this point, the tree is:

short [0,1]

brown [0,1]

–
(hair=blond)

eyes

tall [1,1]

brown [0,1]

–
(hair=dark)

eyes

height

but it is then transposed to:

blue [1,0]

+

brown [0,2]

short [0,1]

–
(hair=blond)

tall [0,1]

–
(hair=dark)

height

eyes

The branch for value blue of attribute eyes comes about because all the possible level-zero
instance counts have already been updated. Thus, when eyes becomes the test attribute, its possible
branches are already known. Now the algorithm needs to ensure that a best test attribute is at the
root of each immediate subtree, except the tree below blue, which will be updated when the rest
of the training instance is processed. The current test attribute height is at the root of the tree
below brown due to transposition, not due to having the lowest E-score. Note that because the tree
has been updated at level zero, but not yet updated at level one, the subtree below eyes=blue is
currently empty. The subtree will be created when level one is updated. It happens that no tree
restructuring is needed. The rest of the instance is processed recursively at level one, resulting in:

blue [1,0]

+
(hair=blond, height=tall)

brown [0,2]

short [0,1]

–
(hair=blond)

tall [0,1]

–
(hair=dark)

height

eyes

Note that the right subtree, with height at its root, could be contracted to unexpanded form
because all the instances at the node are from the same class. The ID5R algorithm does not include
any contraction step because it is not known when such contractions are worthwhile. An unex-
panded tree requires less space and is cheaper to update. However, there is expense in expanding a
tree because the instances must be examined so that the positive and negative counts can be com-
puted. Experience with the algorithm has shown that contraction to unexpanded form is generally
not worthwhile.

The fourth instance, (–, height=tall, hair=dark, eyes=blue), leads to expansion of the left



Incremental Induction of Decision Trees 10

level-one subtree, and selection of hair as the test attribute, giving:

blue [1,1]

blond [1,0]

tall [1,0]

+

height

dark [0,1]

–
(height=tall)

hair

brown [0,2]

short [0,1]

–
(hair=blond)

tall [0,1]

–
(hair=dark)

height

eyes

The fifth instance, (–, height=short, hair=dark, eyes=blue), causes the test attribute at the root to
be changed to hair. Immediately following the transposition step, the tree is:

blond [1,1]

blue [1,0]

tall [1,0]

+

height

brown [0,1]

short [0,1]

–

height

eyes

dark [0,3]

blue [0,1]

–
(height=tall)

brown [0,1]

tall [0,1]

–

height

eyes

hair

Again it happens that no further tree restructuring is needed. The rest of the instance is processed,
and the resulting tree is:

blond [1,1]

blue [1,0]

tall [1,0]

+

height

brown [0,1]

short [0,1]

–

height

eyes

dark [0,3]

blue [0,2]

–
(height=short)
(height=tall)

brown [0,1]

tall [0,1]

–

height

eyes

hair

The sixth instance, (+, height=tall, hair=red, eyes=blue), does not require changing the test
attribute at the root. Because red is a new value for hair, a new value branch is grown, giving:



Incremental Induction of Decision Trees 11

blond [1,1]

blue [1,0]

tall [1,0]

+

height

brown [0,1]

short [0,1]

–

height

eyes

dark [0,3]

blue [0,2]

–
(height=short)
(height=tall)

brown [0,1]

tall [0,1]

–

height

eyes

red [1,0]

+
(eyes=blue, height=tall)

hair

The seventh and eighth instances update the various counts, but do not cause any tree revision.
After the eighth instance, the tree is:

blond [2,2]

blue [2,0]

short [1,0]

+

tall [1,0]

+

height

brown [0,2]

short [0,1]

–

tall [0,1]

–

height

eyes

dark [0,3]

blue [0,2]

–
(height=short)
(height=tall)

brown [0,1]

tall [0,1]

–

height

eyes

red [1,0]

+
(eyes=blue, height=tall)

hair

If the tree were to be contracted by converting to unexpanded form where possible, the result would
be:

blond [2,2]

blue [2,0]

+
(height=short)
(height=tall)

brown [0,2]

–
(height=short)
(height=tall)

eyes

dark [0,3]

–
(eyes=blue, height=short)
(eyes=blue, height=tall)

(eyes=brown, height=tall)

red [1,0]

+
(eyes=blue, height=tall)

hair

but the algorithm does not perform this step. The tree is shown in this compact form only to facil-
itate its interpretation. This final tree is equivalent to the one that the basic ID3 tree construction
algorithm would build for these eight training instances.



Incremental Induction of Decision Trees 12

4 Theoretical Analysis of Four Decision-Tree Algorithms
With alternative methods for constructing a decision tree, it is natural to ask which one is best.

This section presents a theoretical worst-case analysis of four algorithms4 that build a decision tree
based on a set of training instances. The first algorithm is the basic tree construction algorithm
of the nonincremental ID3. The second algorithm is a variant of the first suggested by Schlimmer
and Fisher, and is called ID3

�

here. This algorithm accepts the training instances one at a time,
each time building a new tree from the accumulated set of training instances using the basic ID3
tree construction algorithm. This is an obvious brute-force method for inferring a decision tree
when the instances are presented serially. The third algorithm is the incremental ID5R. Finally, the
fourth algorithm is the incremental ID5, a predecessor of the ID5R algorithm.

The analysis is in terms of worst-case cost to build a tree, given a set of instances, and is
similar to that of Schlimmer and Fisher (1986a). Their analysis was measured in terms of the
total number of attribute comparisons while building the tree. In the analysis here, there are two
metrics. The first measures the cost of maintaining the positive and negative instance counts in
terms of the number of additions performed. Each addition needed to compute such a count is
called an instance-count addition. The metric is similar to Schlimmer and Fisher’s number of
attribute comparisons, but also includes the cost of adding counts during the tree transposition
process. The second measures the cost of attribute selection in terms of the number of E-score
computations. This activity is not very costly for the basic ID3 tree construction algorithm, but
should be considered for the ID5R and ID4 algorithms, which compute the E-score for every non-
test attribute at every decision node in the tree.

A worst-case analysis lets one ignore domain characteristics, such as the ability of attributes
to discriminate one class from another. In an ideal representation, there is a single attribute that
determines class membership, leading to a shallow decision tree; a less-than-ideal representation
would require a deeper tree. In general, larger trees are more expensive to construct than smaller
trees, so the suitability of the representation affects the size of the decision tree and therefore
the expense of building the tree. The analysis also assumes that all possible training instances
are observed. Even with these pessimistic worst-case assumptions, it is possible to draw useful
conclusions from the analyses. To simplify the notation in the analyses below, let d be the number
of attributes (i.e.

�
A

�
), b be the maximum number of possible values for an attribute, and n be the

number of training instances.

4.1 Analysis of the Basic ID3 Algorithm
The basic tree construction algorithm of ID3 first checks whether all the instances at a node

are from the same class. If so, then the tree is just an answer node containing the class name.
Otherwise, the algorithm counts the number of positive and negative instances for each value of
each attribute. It then computes the E-score for each attribute, selects an attribute with the lowest
E-score to be the test attribute at the node, and builds a tree recursively for each subset of the
instances with the same value of the selected test attribute. If there is only one possible attribute at
a node, then there is no need to compute the E-score.

In choosing the test attribute at the root, the algorithm must count all d attribute values of all n
instances. At the root (level zero) there are d � n instance-count additions and d E-score calculations.

4The ID4 algorithm has been omitted because a concept may be unlearnable by ID4, making the worst-case cost
of building a correct tree undefined.



Incremental Induction of Decision Trees 13

At level one, there will be b subtrees in the worst case. Because the level-zero test only partitions
the instances into a set of subproblems for which subtrees must be built, all n instances will be
examined at level one, in the worst case. However, at level one each instance is described by
only d � 1 attributes, so there are will be � d � 1 � � n instance-count additions and � d � 1 � � b E-
score calculations. In general, the worst-case cost of building the tree in terms of instance-count
additions is

d

∑
i � 1

i � n � n �

d � � d � 1 �
2� O � n � d2 ���

In terms of E-score calculations, the worst-case cost of building the tree is

d

∑
i � 2

i � bd � i � 2bd � bd � 1 � � d � 1 � b � d� b � 1 � 2

� O � bd ���
This analysis shows that the complexity of the worst-case cost of building a tree with the basic

ID3 tree construction algorithm is linear in the number of instances for instance-count additions,
and constant for E-score calculations. Quinlan (personal communication) has pointed out that
because a tree of n instances will contain at most n � 1 decision nodes and because there are at
most d E-score calculations at a node, there will be at most d � � n � 1 � E-score calculations. It will
usually be the case that d � � n � 1 � � bd , so one can often expect to do much better than the worst
case. An example problem for which worst-case performance will be observed is to present all 2d

training instances for the d-bit parity concept.

4.2 Analysis of the ID3
�

Variant
The ID3

�

incremental tree construction algorithm, suggested by Schlimmer and Fisher for
comparison purposes, builds a new tree after each training instance is observed. The algorithm
adds each new training instance to the set of observed training instances, and then uses the basic
ID3 tree construction algorithm to build a new decision tree. This obvious incremental algorithm
provides a basic level of complexity that other incremental algorithms must improve upon to be
worth using.

Based on the above analysis of the basic ID3 tree construction algorithm, the worst-case
number of instance-count additions is

n

∑
i � 1

i �

d � � d � 1 �
2

� d � � d � 1 �
2

�

n � � n � 1 �
2� O � n2

� d2 �
and the number of E-score calculations is

n

∑
i � 1

2bd � bd � 1 � � d � 1 � b � d� b � 1 � 2 � n � � 2bd � bd � 1 � � d � 1 � b � d� b � 1 � 2 �
� O � n � bd ���



Incremental Induction of Decision Trees 14

The analysis shows that for instance-count additions, the worst-case cost of building a tree with
the ID3

�

algorithm is polynomial in the number of training instances n. For the number of E-score
calculations, the worst-case cost is linear in n.

4.3 Analysis of the ID5R Algorithm
The ID5R algorithm builds a decision tree incrementally, based on the observed training in-

stances. The tree is revised as needed, giving a tree equivalent to the one that the basic ID3
algorithm would construct, given the same set of training instances. Information is maintained for
the possible test attributes at each node so that it remains possible to change the test attribute at
the node. This information consists of the positive and negative instance counts for every possible
value of every attribute. Accounting for the necessary work in revising the tree makes the analysis
more lengthy than for the two cases above. Therefore, the analysis is in two parts, one for the
worst-case number of instance-count additions and the other for the worst-case number of E-score
calculations.

4.3.1 Worst-Case Number of Instance-Count Additions
There are three components to the expense of updating the decision tree. The first is the cost of

updating the instance-counts when incorporating the training instance in the tree structure. Second
is the cost of restructuring the tree so that the desired test attribute is at the root. Finally, there is
the cost of recursively restructuring the subtrees as necessary to ensure that each has a best test
attribute at its root. These three components are analyzed individually and then combined.

First, consider the worst-case cost of updating the tree for one training instance without any
tree revision. Assuming an expanded tree, the cost of updating the tree at the root (level zero)
is d instance-count additions because there are d possible attributes. The update procedure then
traverses the corresponding value branch to level one of the tree. At level one there will be d � 1
instance-count additions. In general, the worst-case number of instance-count additions to update
the tree for one instance is

d

∑
i � 1

i � d � � d � 1 �
2

� O � d2 ���
Second, consider the cost of changing the test attribute at the root of the tree. For convenience,

let pa � d � be the worst-case cost of changing the test attribute at a node for a tree of depth d. For
a tree with d � 1 attribute, a pull-up is never needed, giving pa � 1 � � 0. For larger values of d,
the cost is derived from the definition of the pull-up process, which involves transposing the top
two levels of the tree. The level-zero instance-counts are already correct due to the regular update
procedure. The level-two instance counts are not touched. Only the level-one instance-counts for
the non-test attributes need to be recomputed due to the regrouping of the level-two subtrees. For
a tree with d � 2, there will be only one possible attribute at level one, and therefore no non-test
attributes at level one, giving pa � 2 � � 0. For a tree with d � 3, there will be one non-test attribute at
level one. For each non-test attribute there are b possible values, with one positive and one negative
count for each. The counts are computed by summing the counts for the corresponding level-two
trees. Because there are b level-two subtrees, there will be 2b2 instance-count additions for each of
the non-test attributes. Because there are d � 2 non-test attributes, the total is 2b2 � d � 2 � instance-
count additions. In the worst case, the attribute to be pulled up needs to be pulled up recursively



Incremental Induction of Decision Trees 15

from the deepest level of the tree. In general, pa � d � � b � pa � d � 1 � � 2b2 � d � 2 � , which gives

pa � d � � d

∑
i � 2

bi � 22b2 � d � i �
� 2b2� b � 1 � 2 � bd � 1 � b � d � 1 � � � d � 2 � �
� O � bd ���

Third, consider the cost of recursively restructuring the subtrees to ensure that each has a best
attribute test at its root. The process of pulling an attribute to the root of the tree leaves behind a
certain amount of wreckage. The old test attribute is now at the root of each immediate subtree
of the root. This is a byproduct of the tree revision, not a result of selection by E-score. For each
immediate subtree except the one that will be visited when the training instance is processed at the
next level, it is necessary to compute the new E-scores for the possible test attributes, pull a best
attribute to the root if necessary, and then repeat the process for its subtrees.

To simplify the analysis, assume that a best test-attribute is reestablished in all b (instead of
b � 1) subtrees. For convenience, let ra � d � be the worst-case cost of restructuring the b subtrees
at level d � 1. For d � 1, there are no possible attributes at level one, giving ra � 1 � � 0. For
d � 2, there is only one possible attribute at the level-one subtrees, meaning that no restructuring
is possible, giving ra � 2 � � 0. For d � 3, there are b level-one subtrees in which a best attribute
must be pulled to the root. In general

ra � d � � b � � pa � d � 1 � � ra � d � 1 � �
� d � 1

∑
i � 3

bd � i
� pa � i ���

To simplify the analysis, and since the cost of computing pa � d � is O � bd � , assume pa � d � � bd .
Then

ra � d � � d � 1

∑
i � 3

bd � i
� bi

� � d � 3 � bd

� O � d � bd ���
The worst-case cost of updating the decision tree is the sum of these three components. For

one instance, the worst-case number of instance-count additions is
d

∑
i � 1

�
i � pa � i � � ra � i ��� � d

∑
i � 1

i � d

∑
i � 1

pa � i � � d

∑
i � 1

ra � i ���
To simplify the analysis, let pa � d � � bd and ra � d � � dbd . Then

d

∑
i � 1

�
i � pa � i � � ra � i ��� � d

∑
i � 1

i � d

∑
i � 1

bi � d

∑
i � 1

ibi

� d � d � 1 �
2 � dbd 
 2 � � n � 1 � bn 
 1 � b� b � 1 � 2� O � d � bd ���



Incremental Induction of Decision Trees 16

Finally, for all n instances the worst-case total number of instance-count additions is

O � n � d � bd �
The analysis shows that for instance-count additions, the worst-case cost of building a tree with
the ID5R algorithm is linear in the number of training instances n.

4.3.2 Worst-Case Number of E-Score Calculations
In terms of the worst-case number of E-score calculations, there are only two components to

the expense of updating the decision tree. The first is the cost that is incurred when incorporating
the training instance into the tree structure. The second is the cost of recursively restructuring the
subtrees as necessary to ensure that each has a best test attribute at its root. These two components
are analyzed individually and then combined.

First, consider the worst-case cost of updating the tree for one instance without any tree revi-
sion. Assuming an expanded tree, the cost of updating the tree at the root (level zero) is d E-score
calculations because there are d possible attributes. The update procedure then traverses the cor-
responding value branch to level one of the tree. At level one there will be d � 1 instance-count
additions. Thus, as in the case for instance-count additions, the worst-case number of E-score
calculations to update the tree for one instance is

d

∑
i � 1

i � d � � d � 1 �
2

� O � d2 ���
Now consider the worst-case number of E-score calculations needed as a result of tree re-

structuring. During the portion of the pull-up process in which the test attribute is moved to the
root, no E-scores are calculated because the tree may be revised again when reestablishing a best
test attribute at the root of each of the subtrees. Therefore, one need only compute the worst-case
number of E-score calculations during the reestablishment portion of the pull-up process.

For convenience, let re � d � be the number of E-score calculations required while reestablishing
a best test attribute for a tree of depth d. For a tree with d � 1, there are no possible attributes at
level one, giving re � 1 � � 0. For a tree with d � 2, there is only one attribute at level one, so there
is no need to compute the E-score, giving re � 2 � � 0. For a tree of depth d � 3, there are b � 1
level-one subtrees with d � 1 possible attributes, giving re � 3 � � b � d � 1 � E-score calculations. To
simplify the analysis, assume that a best test-attribute is reestablished in all b subtrees. Then, in
general, there will be b � d � 1 � E-score calculations at level one, and re � d � 1 � E-score calculations
required for the b subtrees, giving re � d � � b � � d � 1 � � re � d � 1 � � . This reduces to

re � d � � d

∑
i � 3

bi � 2 � d � i � 2 �
� b� b � 1 � 2

�
2bd � 1 � bd � 2 � db � d � 1 �

� O � bd ���
Putting together the worst-case E-score cost during update and the worst-case E-score cost

during reestablishment gives an instance update cost of

d

∑
i � 1

�
i � re � i ��� � d

∑
i � 1

i � d

∑
i � 1

re � i ���



Incremental Induction of Decision Trees 17

To simplify the analysis, let re � d � � bd . Then

d

∑
i � 1

�
i � re � i ��� � d

∑
i � 1

i � d

∑
i � 1

bi

� d � d � 1 �
2 � bd 
 1 � b

b � 1� O � bd ���
Finally, for all n instances the worst-case total number of E-score calculations is

O � n � bd ���
The analysis shows that for E-score calculations, the worst-case cost of building a tree with the
ID5R algorithm is linear in the number of training instances n.

4.4 Analysis of the ID5 Algorithm
The ID5 algorithm (Utgoff, 1988) is equivalent to the ID5R algorithm except that, after re-

structuring a tree to bring the desired attribute to the root, the subtrees are not restructured recur-
sively. Specifically, step 3(c)ii of the ID5R algorithm shown in Table 3 is omitted. By eliminating
this step, one hopes to reduce the expense of tree manipulation. However, an important conse-
quence of omitting this step is that the resulting tree cannot be guaranteed to be one that the basic
ID3 tree construction algorithm would have built, given the same training instances.

The analysis of the ID5 algorithm follows directly from that of ID5R above. For one instance,
the worst-case number of instance-count additions is

d

∑
i � 1

�
i � pa � i ��� � d

∑
i � 1

i � d

∑
i � 1

pa � i ���
As above, to simplify the analysis let pa � d � � bd . Then

d

∑
i � 1

i � d

∑
i � 1

pa � i � � d

∑
i � 1

i � d

∑
i � 1

bi

� d � d � 1 �
2 � bd 
 1 � b

b � 1� O � bd ���
For all n instances the worst-case total number of instance-count additions is

O � n � bd � �
which is a factor of d less expensive than for ID5R.

In terms of E-score calculations, the worst-case number for one instance is simply

d

∑
i � 1

i � d � d � 1 �
2� O � d2 ���



Incremental Induction of Decision Trees 18

Table 6. Summary of worst-case complexities.
Instance-count additions E-score calculations

ID3 O � n � d2 � O � bd �
ID5 O � n � bd � O � n � d2 �
ID5R O � n � d � bd � O � n � bd �
ID3 � O � n2 � d2 � O � n � bd �

For all n instances, the complexity in terms of E-score calculations is

O � n � d2 � �
which is much simpler than for ID5R, and independent of b, the number of possible attribute
values.

4.5 Summary
Based on the four analyses, how do the algorithms compare? Table 6 summarizes the com-

plexities, listing the algorithms in order from least to most complex according to the number of
instance-count additions. The basic ID3 tree construction algorithm is least expensive, but is not
incremental. The ID3

�

algorithm, though incremental, is most expensive in terms of instance-count
additions. Of the two remaining algorithms, the worst-case cost of building a tree for a given set of
instances is less for ID5 than ID5R. Unfortunately, ID5 is not guaranteed to build the same tree as
ID3. Thus, if one wants to build a decision tree incrementally, and one wants a tree that ID3 would
build, the analysis indicates that the ID5R algorithm is least expensive in the worst case.

5 Empirical Behavior of ID3 Variants
This section reports empirical behavior of the variants of ID3 discussed above. Although

the analyses in Section 4 indicate the worst-case complexity of building a decision tree for the
algorithms, the worst-case assumptions are quite strong, and one would like to get some sense of
expected behavior. In particular, tree restructuring is potentially expensive for ID5R, but it will be
worthwhile if one can expect to do significantly better than the worst case. In general, empirical
observation can expose aspects of behavior that are not captured in an asymptotic complexity
analysis.

The rest of the section describes three experiments. The first two experiments are similar in
structure, comparing the basic ID3 tree construction routine to the incremental algorithms ID3

�

,
ID5R, ID5, and ID4. In addition, each incremental algorithm is run with two different training
strategies, giving a total of nine algorithms. The third experiment applies ID5R to Quinlan’s classic
chess task, comparing two different attribute selection metrics by Quinlan.

For the first two experiments, the ID3
�

, ID5R, and ID4 algorithms were set so that they would
break ties among equally good attributes in an identical manner. In addition, the E-score values
were rounded to the nearest .00001 to remove differences in E-score values due solely to different
orderings of floating point operations.

5.1 Nine Algorithms on the Six-Bit Multiplexor
In the first experiment, nine variants of the ID3 algorithm were applied to learning a rule

that corresponds to a simple multiplexor (Barto, 1985; Wilson, 1987; Quinlan, 1988). In the six-
bit version of the problem, there are two address bits and four data bits. The classification of



Incremental Induction of Decision Trees 19

Table 7. Behavior on the six-bit multiplexor task.
Alg. Insts. Trained ICAs E-scores CPU Nodes Acc.

ID3 � 126 126 156,210 6,052 17.1 38.9 100.0
ID5R 126 126 4,319 3,556 4.1 38.9 100.0
ID5 148 148 4,633 2,887 3.2 43.3 100.0
ID4 3,770 3,770 67,125 56,348 61.4 39.6 100.0

�

ID3 � 253 33 9,095 1,143 1.8 33.0 100.0
�

ID5R 253 33 1,377 1,405 1.5 33.0 100.0
�

ID5 281 37 1,502 660 1.1 38.0 100.0
�

ID4 30,000 14,849 196,183 130,515 150.9 5.6 50.0
ID3 64 64 1,176 66 0.2 51.0 100.0

an instance is equal to the value of the addressed data bit. The problem is difficult because the
relevance of each of the four data-bit attributes is a function of the values of the two address-bit
attributes.

Four of the algorithms are the incremental ID3
�

, ID5R, ID5, and ID4. Four more algorithms
come about from modifying the training strategy. As suggested by Schlimmer and Fisher (1986a),
an alternative training strategy is to update the tree only if the existing tree would misclassify the

training instance just presented. The algorithms using this strategy are denoted
�

ID3
�

,
�

ID5R,
�

ID5,
and

�

ID4 respectively, and thus are called the “hat” versions. The ninth algorithm is the basic ID3
tree construction routine applied nonincrementally to the entire training set of sixty-four instances.

For each of the eight incremental variants, the instances were presented in random order, with
replacement, until the tree gave a correct classification for all sixty-four instances in the instance
space, or until 30,000 instances had been presented. Each variant was run twenty times, and the
results were averaged. The identical sequence of twenty initial random number seeds was used for
the twenty runs of the eight incremental algorithms.

Table 7 shows seven measurements for the nine algorithms. For the eight incremental algo-
rithms, the values are averaged over the twenty runs. The first measurement (Insts.) is the number
of training instances presented to the algorithm. The third column (Trained) is the number of in-
stances that were actually used to update the tree. For the hat variants, this number is usually less
than the number presented, because only instances that would be misclassified by the current tree
are used to update the tree. The fourth column shows the average number of instance-count addi-
tions, and the fifth column shows the average number of E-score computations. Total cumulative
cpu seconds5 spent in processing presented training instances is shown in column six. The size of
the final decision tree is shown in the column labeled ‘Nodes’, as measured by the total number of
decision and answer nodes. Finally, the last column shows the percentage of the sixty-four possible
instances that were classified correctly by the final decision tree.

The results show that ID5R is much less expensive than ID3
�

for this problem, although for
�

ID5R and
�

ID3
�

, the difference is less pronounced. The smaller number of instances actually used

to update the trees makes
�

ID3
�

comparable. However, the greater expense of the ID3
�

algorithm is
evident for the larger number of instances used by ID5R and ID3

�

. Note that the hat variants find

5All algorithms were implemented in Common Lisp and run on a SUN 4/110.



Incremental Induction of Decision Trees 20

smaller trees than the plain versions.
The remaining five algorithms are included for comparison purposes, but are each flawed as

an incremental version of ID3. The ID5 variant will build a consistent decision tree for a given set
of training instances, but the tree is not necessarily the same that ID3 would build. The experiment
shows that ID5 needs to examine more training instances than ID3 or ID5R in order to induce a
tree that is correct for the entire training set. The ID5 algorithm is less expensive than ID3

�

and
ID5R, but finds larger trees.

The ID4 algorithm is not guaranteed to find the same tree as ID3, nor is it guaranteed to find
a consistent decision tree. The experiment shows that the algorithm requires a large number of
training instances, making its overall expense very high in comparison to the others. The final tree
is also large by comparison. The

�

ID4 algorithm never found a consistent decision tree within the
cutoff of 30,000 training instances. The average final tree size of only 5.3 nodes gives little hope
that the algorithm would find a consistent tree with further training. Even if it did, the expense is
already excessive in comparison to the other three hat algorithms. Why does ID4 succeed where

�

ID4 fails? The hat version trains only on the instances that are misclassified by the current tree.
When the tree changes, the set of instances that it will misclassify also changes. The new set of
instances that the tree will misclassify may lead to yet another change of test attribute at the node.
This changing of the training set does not work well for the ID4 algorithm, resulting in thrashing.

Finally, the basic ID3 tree construction algorithm is not incremental. Although the algorithm
was much more efficient than the incremental variants, it also built the largest tree. Of course, if
ID5R were to train on the entire set, it would build an identical tree. The issue is why training on a
larger set of instances tends to produce a larger decision tree. This phenomenon was not expected
and remains unexplained. Apparently the probability distributions inferred from incorporating only
misclassified training instances leads to better attribute selection than distributions inferred from
larger than necessary training sets, e.g. the entire training set.

5.2 Nine Algorithms on a Simplified Chess Problem
The second experiment is similar to that of the multiplexor described above, but with two

differences. First, the domain is the chess task used as a test problem by Schlimmer and Fisher
(1986a), which is a simplified version of Quinlan’s (1983) chess task. In the simplified version,
the problem is to learn a rule that decides whether a chess position with White having King and
Rook versus Black having King and Knight is lost in two-ply, with black on move. Each training
instance is a chess position described in terms of sixteen three-valued attributes.

The second difference is that the set of test instances is drawn independently from the set of
training instances. For training purposes, a single fixed set of 250 training instances was drawn
at random. For each of the eight incremental variants, the instances were presented in random
order, with replacement, until the tree gave a correct classification for all 250 training instances, or
until 30,000 instances had been presented. This training strategy produces a learning task with a
terminating condition that does not depend on a fixed number of training instances being presented.
This is important because some of the variants require more training instances than the others, and
all the variants have differing processing cost.

For testing purposes, a second fixed set of 250 test instances was also drawn at random.
Classification accuracy was measured as the proportion of the test instances correctly classified.
Each variant was run twenty times, and the results were averaged. For the nonincremental ID3,
a single tree was built, based on the 250 training instances. The same sequence of twenty initial



Incremental Induction of Decision Trees 21

Table 8. Behavior on the simplified chess task.
Alg Insts Trained ICAs E-scores CPU Nodes Acc

ID3 � 195 195 737,932 5,357 74.1 10.0 99.6
ID5R 195 195 14,476 10,097 20.9 10.0 99.6
ID5 195 195 13,642 9,538 8.1 10.0 99.6
ID4 236 236 7,940 4,451 6.2 10.0 99.6

�

ID3 � 226 12 1,827 328 0.6 10.0 99.6
�

ID5R 226 12 2,396 2,686 2.7 10.0 99.6
�

ID5 236 12 1,544 450 1.1 10.0 99.6
�

ID4 27,058 1,920 63,219 34,692 59.2 5.3 93.3
ID3 250 250 7,045 46 0.8 10.0 99.6

random number seeds was used for the twenty runs of the eight incremental algorithms.
Table 8 shows seven measurements for the nine algorithms. The first six are the same as those

in Table 7, whereas the seventh reports the accuracy of the final tree on the independent test set of
250 instances. The results of this experiment are similar to those of the first. The ID5R algorithm
was less expensive than the ID3

�

algorithm for this problem. However, the small number of training

instances needed for
�

ID3
�

and
�

ID5R made
�

ID3
�

less expensive. For this simple learning problem,
�

ID3
�

even beat
�

ID5. The ID4 algorithm had no trouble finding a consistent concept description, and
with less expense than each of ID3

�

, ID5R, and ID5. The hat variants are generally less expensive,
but again

�

ID4 had trouble finding a consistent tree. It was cut off at 30,000 instances in eighteen
of the twenty runs.

The attributes that are provided for a learning task have a profound effect on the difficulty
of that task. The attributes for the multiplexor task describe only the bit values. In contrast,
the attributes for the simplified chess task describe more than the board position; they measure
relationships among the pieces that are predictive of winning or losing. The result is that the chess
rule is easier to learn than the multiplexor rule, even though the space of instance descriptions
for the chess task (sixteen three-valued attributes) is larger than that of the multiplexor task (six
two-valued attributes).

5.3 Quinlan’s Chess Task
In order to observe the ID5R algorithm’s behavior on a larger problem, it was applied to

Quinlan’s (1983) classic chess task, in which there are 551 available training instances, each de-
scribed by 39 binary attributes. The algorithm was run five times for each of two attribute selection
strategies. The first approach selects an attribute with the lowest E-score. The second chooses
an attribute with the highest gain ratio (Quinlan, 1986), which compensates for a bias in the E-
score metric toward attributes with more possible values. Using the definitions in Section 2, the
gain-ratio criterion is defined

gain-ratio � ai � � �
I � p � n � � E � ai �

IV � ai � if I � p � n � � E � ai ��� g� ∞ otherwise



Incremental Induction of Decision Trees 22

Table 9. Behavior of ID5R on Quinlan’s (1983) chess task.
Selection Insts Trained ICAs E-scores CPU Nodes

Gain Ratio 3,340 132.6 308,597 551,237 1,410 125.0
E-score 4,070 183.0 761,534 1,458,722 1,292 170.6

100

75

50

25

25 50 75 100 125 150
Number of training instances

A
cc

ur
ac

y

Figure 1. Change in classification accuracy on the chess task, for the ID5R algorithm.

with

IV � ai � � � �
Vi

�
∑
j � 1

pi j � ni j

p � n
log � pi j � ni j

p � n �
and

g � 1�
A

� �

�
A

�
∑
i � 1

� I � p � n � � E � ai � ���
Table 9 shows the average values for six measures using the two attribute selection metrics.

As expected, the gain-ratio criterion is better in terms of finding smaller trees, and it also leads to
fewer instance-count additions and E-score calculations. However, the gain-ratio criterion requires
greater total cpu time because of the additional expense in computing one I � p � n � function and one
or more IV � ai � functions when picking a best attribute.

A surprise is that the average-case tree size is comparable to the previously known smallest
tree size of 125 for the gain-ratio criterion (Quinlan, personal communication) and 175 for the
lowest E-score criterion (Quinlan, 1986). Indeed, for the gain-ratio criterion, one of the five trees
was only 117 nodes, now the smallest known decision tree for this concept. Given that ID5R
builds the same tree as ID3 for a given set of instances, the only difference lies in the selection of
instances used to build the tree (Utgoff, 1989). One can surmise that selecting training instances
one at a time, based on inconsistency with the current tree, leads to a smaller tree than selecting
instances many at a time, as is done in the complete ID3 learning algorithm.

Figure 1 plots the classification accuracy of the6 117 node tree on all 551 instances after each

6The original two figures have been lost. The figures that appear here were generated from a 117 node tree, not the



Incremental Induction of Decision Trees 23

125

100

75

50

25

25 50 75 100 125 150
Number of training instances

T
re

e 
S

iz
e

Figure 2. Change in tree size for the chess task, for the ID5R algorithm.

training instance was added to the tree, and Figure 2 plots the size of the decision tree after each
training instance was observed. Although tree size is generally increasing, there can be significant
differences from one training instance to the next. Consider the change in tree size after the 98th,
99th, and 100th training instance. The tree size changes from 87 nodes to 111 and back to 87. It
is not clear whether this kind of variation is characteristic of the instance selection strategy or is
specific to the chess domain. In either case, the large variation does indicate that the quality of the
learning, as measured by resulting tree size, can be very sensitive to the selected training instances.

6 Future Work
Several improvements for the ID5R algorithm are possible. For example, a significant expense

for the ID5R algorithm is computation of E-scores. The dominating cost in computing these scores
is the evaluation of the log function in the computation of an I � p � n � . The efficiency of the algorithm
can be improved by storing the result of each I � p � n � in the tree structure. Because only one positive
or negative count for one attribute-value pair is changed when incorporating an instance, only one
I computation would be needed in order to compute an E-score.

An issue that was not addressed here is learning from noisy instances. Two extensions to the
ID5R algorithm that would let it deal with noise come to mind. First, if a new training instance has
been encountered previously with a different classification and the old instance has been saved in
the tree, one would remove the older instance, add the newer instance, and then revise the tree as
necessary. This modification would let the system handle concept drift. Alternatively, one could
retain the instance that results in a smaller tree, or that would result in a test attribute with the
lower lowest E-score. The second extension would include the χ2 test for dependence. If splitting
on a given attribute cannot be justified, then do not allow it to be the test attribute at a node. If no
split can be justified, then the decision tree rooted at the node will need to be an unexpanded tree.
This will work if the definition of an unexpanded tree allows any set of training instances. This
modification is trivial, but it differs from the definition of unexpanded tree given above.

original 117 node tree. The paragraph has been left as is, even though the discussion of tree size does not quite match
the figures.



Incremental Induction of Decision Trees 24

The problem of classifying instances for which certain attribute values are missing has re-
ceived some attention (Quinlan, 1986), and ID5R could be modified to deal with this issue by
restructuring the tree during classification. One would select the best attribute for which the value
was available in the instance, restructure the tree if necessary so that the attribute was the test at-
tribute, and then descend to the next level. If all branches corresponding to the available attribute
values in the instance were traversed without determining the class, then the instance counts in the
last node could be used (e.g., by majority vote) to decide the classification.

The most important open problem in finding good decision trees is the problem of defining
a good set of attributes. For example, the chess task was easier than the multiplexor because
the provided chess attributes are better at capturing the regularity in the domain. If an additional
attribute were included for the multiplexor that specified the address indicated by the address bits,
then the multiplexor task would be significantly easier. The problem of discovering a good set of
attributes needs attention, and is the principal issue that will be explored as this research continues.

7 Conclusions
The ID5R algorithm builds a decision tree incrementally, by restructuring the tree as neces-

sary so that a best test attribute is at each decision node. Although the algorithm retains training
instances within the tree structure, the instances are used only for restructuring purposes; they are
not reprocessed. The algorithm builds the same tree as the basic ID3 tree construction algorithm,
given the same training instances, assuming that ties for equally good attributes are broken identi-
cally. In empirical tests, the ID5R algorithm is less expensive than the brute-force ID3

�

algorithm.
An earlier incremental algorithm, ID4, is incapable of learning certain classes of concepts

that ID3 can learn. Furthermore, for concepts that ID4 can acquire, empirical testing shows that
the algorithm can be expensive in comparison to ID5R. Moreover, the strategy of training only on
instances that the tree would misclassify is detrimental to ID4, reducing the class of concepts that
it can learn.

For ID5R, this training strategy generally leads to a smaller final decision tree than the strategy
of ID3, which accumulates misclassified instances many at a time. This phenomenon of finding
smaller trees was observed both for the multiplexor task and for Quinlan’s chess task. With this
training strategy, ID5R found the smallest known tree to date for the chess domain. The ID5R
algorithm can be viewed as an incremental variant of the ID3 tree building routine. The latter will
find the identical tree if the initial window contains just one instance and the window is grown by
one instance at a time. Until the creation of the incremental ID5R algorithm, such an approach has
been prohibitively expensive.

Acknowledgements
This material is based upon work supported by the National Science Foundation under Grant

No. IRI-8619107, a General Electric Faculty Fellowship, and by the Office of Naval Research
through a University Research Initiative Program, under contract number N00014-86-K-0764. The
several discussions with Jeff Schlimmer on ID3 and ID4 were very helpful. In addition, he pro-
vided an instance generator for the simplified chess task, and made useful comments during the
review process. Ross Quinlan made many helpful observations and suggestions, and also provided
his chess data. Pat Langley provided extensive comments, particularly with regard to clarifying
the presentation. I am indebted to Maria Zemankova for pointing out the work of Robin Cockett,
and to Robin Cockett for the discussions about revising decision trees. The presentation bene-



Incremental Induction of Decision Trees 25

fitted from comments by Sharad Saxena, Margie Connell, Jamie Callan, Peter Heitman, Kishore
Swaminathan, and Dan Suthers.

References
Barto, A. G. (1985). Learning by statistical cooperation of self-interested neuron-like computing

elements. Human Neurobiology, 4, 229-256.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression
trees. Belmont, CA: Wadsworth International Group.

Buchanan, B. G., & Mitchell, T. M. (1978). Model-directed learning of production rules. In Water-
man & Hayes-Roth (Eds.), Pattern-directed inference systems. New York: Academic Press.

Cockett, J. R. B. (1987). Discrete decision theory: Manipulations. Theoretical Computer Science,
54, 215-236.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2, 139-172.

Gallant, S. I. (1988). Connectionist expert systems. Communications of the ACM, 31, 152-169.

Lewis, P. M. (1962). The characteristic selection problem in recognition systems. IRE Transactions
on Information Theory, IT-8, 171-178.

Michalski, R. S., & Chilausky, R. L. (1980). Learning by being told and learning from examples:
An experimental comparison of the two methods of knowledge acquisition in the context of
developing an expert system for soybean disease diagnosis. Policy Analysis and Information
Systems, 4, 125-160.

Michalski, R. S. (1983). A theory and methodology of inductive learning (pp. 83-134). In Michal-
ski, Carbonell & Mitchell (Eds.), Machine learning: An artificial intelligence approach. San
Mateo, CA: Morgan Kaufmann.

Mitchell, T. M. (1978). Version spaces: An approach to concept learning. Doctoral dissertation,
Department of Electrical Engineering, Stanford University, Palo Alto, CA.

Moret, B. M. E. (1982). Decision trees and diagrams. Computing Surveys, 14, 593-623.

Quinlan, J. R. (1983). Learning efficient classification procedures and their application to chess
end games (pp. 463-482). In Michalski, Carbonell & Mitchell (Eds.), Machine learning: An
artificial intelligence approach. San Mateo, CA: Morgan Kaufmann.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

Quinlan, J. R. (1988). An empirical comparison of genetic and decision-tree classifiers. Proceed-
ings of the Fifth International Conference on Machine Learning (pp. 135-141). Ann Arbor,
MI: Morgan Kaufman.

Schlimmer, J. C., & Fisher, D. (1986a). A case study of incremental concept induction. Proceed-
ings of the Fifth National Conference on Artificial Intelligence (pp. 496-501). Philadelpha, PA:
Morgan Kaufmann.



Incremental Induction of Decision Trees 26

Schlimmer, J. C., & Granger, R. H., Jr. (1986b). Incremental learning from noisy data. Machine
Learning, 1, 317-354.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal,
27, 379-423.

Utgoff, P. E. (1988). ID5: An incremental ID3. Proceedings of the Fifth International Conference
on Machine Learning (pp. 107-120). Ann Arbor, MI: Morgan Kaufman.

Utgoff, P. E. (1989). Improved training via incremental learning. Proceedings of the Sixth Interna-
tional Workshop on Machine Learning. Ithaca, NY: Morgan Kaufmann.

Vere, S. A. (1980). Multilevel counterfactuals for generalizations of relational concepts and pro-
ductions. Artificial Intelligence, 14, 138-164.

Watanabe, S. (1985). Pattern recognition: Human and mechanical. New York: Wiley & Sons.

Wilson, S. W. (1987). Classifier systems and the animat problem. Machine Learning, 2, 199-228.


