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Abstract: We explore incremental assimilation of new knowledge by sequential learn-
ing. Of particular interest is how a network of many knowledge layers can be con-
structed in an on-line manner, such that the learned units represent building blocks
of knowledge that serve to compress the overall representation and facilitate trans-
fer. We motivate the need for many layers of knowledge, and we advocate sequential
learning as an avenue for promoting construction of layered knowledge structures. Fi-
nally, our novel STL algorithm demonstrates a method for simultaneously acquiring
and organizing a collection of concepts and functions as a network from a stream of
unstructured information.

1 Introduction
Learning is an essential element of intelligent behavior. We know that a human cannot learn

an arbitrary piece of knowledge at any time. Instead, one is receptive to those ideas that would not
be too difficult to learn with a reasonably small amount of effort. Other ideas remain unfathomable
and distant, until the agent’s knowledge develops further, rendering such formerly difficult knowl-
edge now simple enough to absorb. This is the starting point for our discussion, that knowledge
accumulates indefinitely, seemingly as a result of a very basic kind of learning mechanism. Our
discussion focuses on possible computational processes that can model long-term layered learning.

Knowledge that could be acquired readily upon presentation constitutes a frontier of receptiv-
ity, and that which has already been learned by the agent provides a basis on which to assimilate
new knowledge. As currently simple knowledge is assimilated, the frontier of receptivity advances,
improving the basis for further understanding of currently complex knowledge. We explore the
idea that knowledge can accumulate incrementally in a virtually unbounded number of layers, and
we refer to this view and its approaches as many-layered learning. How can an agent process its
input stream so that it structures its knowledge in a usefully layered organization, and how can it
do so over long periods of time, say measured in decades?

We discuss why many layers of knowledge are necessary for learning non-trivial concepts.
After this background perspective, we illustrate several important points with a concrete example.
One of these points is that layered learning can benefit from an input stream that is the result of
an organized curriculum. The second is that simple learning mechanisms can drive a knowledge
organization process very effectively. An important conclusion is that it is possible to design
algorithms that model sequential learning of a large number of interdependent concepts over a
long period of time.

1The correct citation for this article, (C) 2002 Copyright Massachusetts Institute of Technology, is: Utgoff, P. E.,
and Stracuzzi, D. J. (2002). Many-Layered Learning. Neural Computation, 14, 2497-2539.
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2 Background and Motivation
We proceed with a discussion of why a many-layered knowledge representation is essential

for maximizing knowledge compression and hence generalization. Then we comment on common
approaches as practiced in artificial neural network learning. Following that is a short review of
recent work that considers how to model learning of many layers of knowledge.

2.1 Learnability and Compression
Learning is a process of compressing observations and experiences into a form that can be

applied advantageously thereafter. A general statement or hypothesis may explain a great many
observations succinctly, and because it exploits regularity to achieve compression, it will likely be
an excellent predictor of future events (Rissanen & Langdon, 1979). To the extent that a hypothesis
is a correct theory, it can help the agent to predict consequences, and therefore to improve the
agent’s projective reasoning. Structural and procedural knowledge can each be compressed, and
this has important implications not only for space consumption, but also for time consumption and
learnability.

One critical means of achieving compactness is to refer to previously acquired knowledge
whenever possible, rather than to replicate it in place. One finds this notion in structured pro-
gramming, by coding useful procedures or functions, and then referring to them where needed.
This leads to great compression of executable code. It also results in large coding efficiencies, as
the functionality needed in multiple locales is produced and debugged independently just once,
and is used by reference thereafter. Indeed, this approach to modular programming led to the no-
tion of data abstraction, sharing of code libraries, and the general elevation of the functionality of
programmable machines. There is no arbitrary or practical constraint placed on the depth of the
functional nesting.

Shapiro (1987) applied this model of structured programming to learning, calling it structured
induction. He saw that reuse of knowledge facilitated compression, and that a learner could benefit
by applying this idea to classification tasks. By decomposing a learning problem into learning
subproblems, one can learn the subproblems individually (in a context-independent setting), and
then return to a higher level learning problem at a workable level of abstraction. For example, in
learning whether a King-Pawn-versus-King chess position can be won, one of the important criteria
is whether the pawn can outrun the opposing king to the far side of the board in order to become a
queen without being captured. This is itself a Boolean predicate to be learned, which discriminates
the ‘can outrun’ from the ‘cannot outrun’ positions. Upon learning this concept (Bruner, Goodnow
& Austin, 1956) of outrun, it can be used as a primitive in the original learning problem. This is
a very powerful approach with respect to producing compression. An additional important view
of this process is that the outrun predicate is a Boolean feature that is true or false of a position,
giving a new dimension for discrimination.

As with modular programming, there is no arbitrary limit on the number of layers of knowl-
edge nested in this manner. Shapiro demonstrated beautifully very dramatic improvements in
compression, compared to learning the same classification task without a structural decomposi-
tion. This is much more than a matter of saving space. The total time required to learn the outrun
concept and the canwin concept is very much less than the total time needed to learn the canwin
concept without the decomposition. The concept of outrun is independent of the larger problem. It
can be learned once, free of the contexts in which it appears, and then be reused as needed within a
variety of contexts. Otherwise, the equivalent functionality of the outrun concept must be learned
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in each and every context in which it appears. The concept of outrun constitutes a building block
because it is an element of knowledge that can be used to simplify learning and expression of
higher level knowledge (predicates and functions) in more than one context.

Pagallo and Haussler’s (1990) FRINGE algorithm attempted to find useful subconcepts by
searching for the pathological effects of omitting them. Whereas Shapiro provided the task (con-
cept) decomposition by hand, Pagallo did not. She noticed that without decomposition, knowledge
would replicate itself. In particular, fragments of replicated structure can be observed at the fringe
of a decision tree. By reducing each smallest replicated subtree to a Boolean function, and then
rebuilding the tree with that function as a new feature (variable), a more compact tree would often
result. In this way, important subconcepts could be identified automatically in an iterative manner.
However, a significant difficulty is that one must see enough data to cause the replicated subtrees
to form in each context. Thus, one must first suffer the consequences before obtaining the benefit.
This nevertheless remains a promising direction for further research.

Reducing replicated structure is a general approach to compression. Cook and Holder’s (1994)
SUBDUE system induces a graph grammar, guided by the minimum-description-length compres-
sion measure, beam search, and background knowledge. There is no arbitrary depth limit for the
grammar. They mention specifically the important idea of building block knowledge, for example
a benzene ring that was identified in a chemistry application. One achieves compression by be-
ing able to reference something by name more than enough times to overcome the small cost of
maintaining a name for that substructure.

Zupan et al’s (1999) HINT algorithm searches for a decomposition of the partial function
indicated by a collection of labeled training instances. The algorithm considers limited subsets
of the variables and subfunctions of those variables, picking the configuration that compresses
the data best. The algorithm locks into each such decomposition step in a greedy manner. This
approach is designed to find a functional decomposition, which differs from grammatical structure
replacement rules because a new function definition is synthesized. Although there are practical
limitations on the number of arguments of the decomposed functions, there are no constraints on
the depth of the decomposition (layering).

In summary, one important avenue for achieving compression is to avoid replication of knowl-
edge. This can be implemented by storing an element of knowledge as a single definition of some
kind, such as a procedure or a function or a concept, and then referring to that element as needed.
Generalization includes not only the process of grouping and abstracting data elements in the
classical sense, but also very importantly the process of organizing knowledge into usefully ref-
erencable entities that can serve as building blocks. One would like to benefit from the widest
applicability and reusability of the knowledge. Composition of individual knowledge elements
facilitates compression.

2.2 Artificial Neural Networks
A variety of artificial neural network (ANN) algorithms have been devised (Rumelhart &

McClelland, 1986; Freeman & Skapura, 1991; Fausett, 1994). They generally impose a severe
constraint on the number of layers of computation, which causes compression and hence learnabil-
ity to suffer. We shall refer to algorithms and approaches that strongly limit the number of layers as
few-layered learning. Artificial neural network approaches that use few layers continue to receive
a great deal of attention, because they can be applied to a useful class of problems and because
there is still much to learn about them. Artificial neural networks have much to offer, and our own
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work reported here fits generally into this category, though not with the restriction of few layers.
Functionally shallow networks preclude forms of knowledge reuse that would facilitate compres-
sion and learnability, and such shallow networks are unattractive in this regard, particularly when
the goal is to model lifelong accumulation of knowledge. Kaas (1982) discusses various neural
organizations. Connectivity constraints and proximity constraints argue against neural plausibility
of shallow networks.

The constraint of few layers limits the ability to reuse knowledge learned previously as build-
ing blocks. Consider a Boolean function expressible by n layers of combinational logic. To
reëxpress the function in just two layers may require an exponential expansion in the number
of gates and connections. The combinations implicit in the deeper circuit must be made explicit
in the shallower circuit. To undertake the learning of a Boolean function subject to the constraint
of just a few layers cripples the learning fatally by forcing it to learn an exponential number of
subconcepts. This affects both space and time consumption. One must observe an exponential
number of training instances in order to sample all the special case learning subproblems. These
principles apply equally well to layers of hard or soft threshold functions.

Consider a simple illustration of the organizational tradeoff. Suppose we were to wish to build
a Boolean logic circuit patterned by the expression:

or
�
and

�
or

�
A � B ��� or

�
C � D ����� and

�
or

�
E � F ��� or

�
G � H �����

where the letters indicate Boolean input values. As written, the corresponding circuit would have
three layers of computation, using seven two-input logic gates and fifteen wires, counting inputs
and output. In contrast, by distributing the two ands, a functionally equivalent logic circuit could
be pattered by the expression:

or
�
and

�
A � C ��� and

�
A � D ��� and

�
B � C ��� and

�
B � D ���

and
�
E � G ��� and

�
E � H ��� and

�
F � G ��� and

�
F � H ���

The corresponding circuit would have two layers of computation, using eight two-input logic gates,
one eight-input gate, and twenty-five wires. The three-layered circuit requires less hardware than
the two-layered circuit. For the Boolean logic case, the constraint of two layers is analogous to re-
quiring that a function be expressed in disjunctive normal form, which provides poor compression
and tedious learning of many special cases.

Gradient-descent for global error minimization of shallowly nested functional forms has not
been shown to scale to deeply nested forms. There is anecdotal evidence that additional layers
may degrade the learning process (Tesauro, 1992). For networks of a fixed architecture, trained
by global error minimization, theoretical results have shown that loading data into such a network
is an NP-complete problem, independent of the training algorithm and regardless of whether the
network is shallow or deep (Judd, 1990; Blum & Rivest, 1988; Šı́ma, 1994). However, when the
network architecture is allowed to grow during learning, or is trained with localized signals, these
results do not apply. White (1990) has shown that networks that grow during learning can learn
arbitrary functions in the limit.

Various shallow network architectures are often called universal approximators for certain
classes of functions (Mitchell, 1997). Although a function may be representable in such an ar-
chitecture, the learnability of such a function with such a representation is not guaranteed. It is
similar to saying that any continuous function can be approximated arbitrarily accurately by a sum
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of monomials; one may require an infeasibly large number of such monomials. Similarly, any
Boolean function can be represented by a disjunctive normal form (and hence a three-layered net-
work), but such a form may suffer with respect to learnability and compression. We must remain
concerned with what is feasibly learnable in a given representation.

Jacobs et al (1991) presented a modular architecture that partitions a space of tasks in such
a way that one few-layered network handles each disjoint subset of the tasks. This is a form of
decomposition in the sense that the tasks are partitioned once at the same level, with one gating
function to select the output of a unit from those among the single subtask layer. A less sophisti-
cated model of a similar kind is a piecewise-linear fit of training data (Nilsson, 1965). Each linear
threshold unit competes to classify an instance, and is trained accordingly so that each linear dis-
criminant applies to a subset of the training instances. Each linear discriminant serves no other
purpose than to provide an answer for its subdomain (of expertise). These shallow networks do not
produce building blocks of knowledge.

Another kind of non-constructive approach places multiple related tasks at the output layer
with a few-layered architecture (Suddarth & Holden, 1991; Caruana, 1997). This enriches the error
gradient at the hidden units, thereby hastening learning. Suddarth explored putting extra tasks on
the output layer that did not actually need to be learned. Their mere presence during the training
process sped learning for the actual task of interest. However, problems associated with using few
layers remain.

Several constructive methods add hidden units during learning, increasing the width of one
or more existing layers (Ash, 1989; Hanson, 1990; Frean, 1990; Wynne-Jones, 1991; Utgoff &
Precup, 1998). For nontrivial problems, these constructive methods generally bog down fatally.
This is often explained as becoming stuck at a local minimum, or being forced to traverse a very
shallow error gradient. However, the potentially exponential learnability requirements imposed by
so few layers are likely to be the major contributor. Other methods add hidden units in a manner
that increases the number of layers (Gallant, 1986; Fahlman & Lebiere, 1990; Frean, 1990), driven
by the single goal of reducing residual global error for the single task at hand.

Reiterating, to impose a constraint on the maximum depth of knowledge nesting imposes a
very strong constraint on the amount of compression and generalization that can be achieved. One
cannot simply resort to trying to train deep networks from the outset by gradient-descent for one
or more advanced concepts at the output layer. Nonrecursively partitioning a large task into a
single set of special cases does not produce building blocks of knowledge. Existing constructive
methods have been designed for single-task learning, and are designed to remove residual error,
not form building blocks. Systems that are designed to solve multiple tasks using shared hidden
units in a fixed architecture benefit from sharing hidden units, but suffer from having few layers of
computational units. We need deep networks in order to learn complex sets of concepts over a long
period of time, yet gradient-descent works only for shallow networks, leaving us with the ability
to learn only simple concepts with shallow networks.

2.3 Sequential Learning
To facilitate learnability and compression, it is important to eliminate hindrances where possi-

ble, particularly any constraint on the number of layers of knowledge. We have mentioned several
systems that have no such constraint, but that solve one or more tasks fixed ahead of time. What
of the longer view, in which we wish agents to learn new tasks in terms of old? The ability to form
building block concepts is critical. One means of forming building blocks is to learn more than
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one concept in a sequential manner, so that old concepts are available for use in expressing new
concepts.

Some learning systems attempt to learn a succession of concepts instead of just a single target
concept. Sammut and Banerji’s (1986) MARVIN is able to use previously learned concepts as
building blocks when learning a new concept. The system assumes the presence of a wise teacher.
That teacher decides which concepts to teach, and in what order. This has the positive effect of
progressively improving the basis for subsequent learning. Banerji (1980) refers to this layering of
concepts as a ‘growing language’.

Clark & Thornton (1997) discuss the need for layers of representation based on the need to
map one representation to another. They do not propose a specific algorithm, instead discussing
the problem more theoretically. They offer a very helpful distinction between two classes of learn-
ing problems, which they call Type-1 and Type-2 learning. For Type-1 learning problems, our
well-studied statistical methods capture regularity that is directly observable, even if only faintly.
However, for Type-2 learning, a mapping of the given variables to new variables is absolutely nec-
essary in order to uncover otherwise unobservable regularity. Of course, more than one level of
mapping to new variables may be needed, further complicating the learning problem. Offline meth-
ods for searching for such mappings will generally be intractable because there is no information
available to guide the process, by definition. A clear implication is that such Type-2 mappings can
arise from learning a variety of concepts or functions in a Type-1 manner, some of which happen
to provide useful mappings for problems that will arise sometime thereafter. Clark & Thornton’s
perspective is very important, and we make use of their Types distinction below.

New work is beginning to appear that approaches larger learning problems in a bottom-up
manner, by learning a progression of tasks. This is very much in the spirit of Shapiro’s work on
structured induction, and it addresses Type-2 learning problems by learning a sequence of tasks.
For example, Stone & Veloso (2000) have explored many-layered learning in the domain of robotic
soccer. They observed that the learning tasks they were tackling were intractable with standard
(Type-1) methods. By teaching their system a progression of simpler (Type-1) tasks, the larger
(Type-2) task could be learned. The system relies on a teacher to decide what to teach, and when.
Stone does not propose a uniform approach to learning at each layer. Instead, any learning algo-
rithm and representation can be used at any layer of computational units.

A recent approach to nesting of learning tasks is the KBCC system Shultz and Rivest (2000).
They extended cascade-correlation (Fahlman & Lebiere, 1990) by training a set of networks ahead
of time to solve a variety of useful tasks. Their KBCC system can add such a learned network
(encapsulated), instead of a single unit, to the overall network being constructed. This produces a
nested form of learning.

Valiant (2000a, 2000b) has proposed a ‘neuroidal’ architecture in which concepts are repre-
sented in layers of linear threshold units. He discusses the idea that each unit should correspond to
a concept, and that each unit can be trained individually (a localized training signal). It remains to
the designer to organize the units and their connections, and to decide how to train them. There is
no limit to the depth of the nesting, and the goal is to express concepts in terms of other building
block concepts. This is an important step toward deep networks of building blocks, and away from
limitations imposed by employing only gradient descent driven by output error.

In a somewhat different vein, there is work that studies how a developing nervous system
impacts learning. For example, Elman (1993) has suggested that the less developed mental ca-
pacity of infants helps learning by admitting only small chunks of knowledge. Simulations with
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language learning in artificial neural networks indicated that starting with a small network capable
of processing short sentences helps to accelerate learning. When development continues, modeled
by enlarging the network, the ability to learn to process longer sentences is considerably enhanced
by having already learned to handle short sentences. Starting with the larger network at the outset
impairs learning. More recently, Dominguez and Jacobs (2001) showed that a developmental ap-
proach to learning improves performance. Learning at one granularity of vision (spatial frequency
range), followed by learning at another is more efficient than learning with both granularities from
the outset. These demonstrations of advantages that accrue from a developing nervous system are
compelling. Some physical developmental stages are obvious in animals. For example, Turkewitz
& Kenny (1982) discuss generally how some neural subsystems are programmed to have a head
start over others. Kittens are born with a fully functional visual system, yet with eyelids that re-
main sealed for 6-7 days after birth. This gives weaker sensory systems a chance to develop before
stronger systems are enabled that would otherwise dominate.

Quartz and Sejnowski (1997) discuss patterns of neurological growth, including axonal and
dendritic arborization, and synapse formation. They relate various studies that support the notion
that nerve activity (use), and correlation among signals of proximal dendrites promote growth
and branching. Their view is that development and learning are very much driven by the agent’s
experiences and interactions with its environment. Learning remains a nonstationary problem
throughout the life of the agent.

Recapitulating, there are Type-2 problems that are too difficult to learn as a shallow Type-
1 mapping from the inputs to the outputs. Indeed, this accounts for the common approach of
manually engineering an input representation in order to reduce the learning task to something
simple enough for one of our presently weak algorithms to handle. A handful of researchers
are examining how to nest learning, so that new learning problems can be made easier by what
has been learned previously. Developmentally, limited processing capability can facilitate early
learning. As processing capability develops, new learning can build on top of, or influenced by,
what has already formed.

3 Design Goals and Assumptions
Our primary goal is to design a single learning mechanism that can exhibit difficult (Type-2)

learning by way of layered simple (Type-1) learning. This constitutes a different paradigm from
the more typical approach of applying a Type-1 method to a Type-1 problem, possibly with hand-
engineering of the input representation, or futilely attempting to apply a Type-1 method to a Type-2
problem. In our view, learning of difficult concepts takes place only after learning of prerequisites
renders them not difficult. This is very different in scope from the common attitude, much evident
in practice, that one should be able to turn on a learning system and watch it run to completion.
We share this goal, but hold that systems capable of Type-2 learning will require more than Type-1
learning algorithms. We conjecture that they will also require a bottom-up layering mechanism, so
that Type-1 problems and results can be composed to realize Type-2 learning.

Our paradigm does not mean that such a learning system could not be used to learn a single
difficult concept of interest, but it does mean that preparatory learning would need to occur as
a prerequisite. In any case, we envision a system that is oriented toward long term learning of
a large number of concepts that are too difficult to learn by any other means presently known.
To this end, we are also interested in how knowledge can accumulate in a set of data structures
that do not lose their utility (Minton, 1990). Organization of knowledge in terms of building
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blocks is an essential element of our design. Of particular interest is how building blocks can
be identified in an on-line bottom-up manner, without resorting to off-line analyses of large data
collections to search for useful decompositions. We shall distinguish on-line composition from
off-line decomposition, even though a retrospective view of local knowledge organization may
bear some strong similarities.

We make three basic practical assumptions in order to produce a workable scope for exper-
imentation. The first is that linear threshold units and linear combination units are the only unit
types, and that they are individually trainable. The second is that such a unit can be adjusted at any
time by delivering (presenting) a training instance to it, wherever the unit may be located in the
network. We do not propagate errors backward; gradient-descent is applied only locally at each
unit to train its adjustable parameters (weights). The third (very common) assumption is that the
instance (input) representation consists of a set of propositional and numeric variables.

The remaining sections present a domain that requires Type-2 learning, two algorithms that
accomplish Type-2 learning by layering of Type-1 learning, and a second well-known domain in
which our bottom-up approach outperforms a gradient-descent approach. We conclude with a
discussion of the main lessons that we have learned.

4 Two Concepts from a Card-Stackability Domain
In the sections below, we explore several aspects of many-layered learning. Of interest is how

to build an on-line learning algorithm that organizes its concepts (linear threshold units and linear
combination units) as it acquires them. To ground the discussion initially, we employ a domain in
which the most advanced of the concepts are two kinds of card stackability found in many forms
of card solitaire. These concepts are rich enough for purposes of study and illustration.

The first kind of card stackability, called column stackable, pertains to cards that are still in
play. A card c1 can be stacked onto a card c2 already at the bottom of a column if two conditions
hold. First, the color (red or black) of the suit of card c1 and the color of the suit of card c2 must
differ, and second, the rank (ace..king) of card c1 must be exactly one fewer than that of card
c2. We shall ignore the rules for which cards may be placed at the head of a column, as they are
immaterial here.

The second kind of card stackability, called bank stackable, applies to cards that become out-
of-play upon being stacked onto a bank. A card c2 that is still in play may be placed onto a card c1

that is out-of-play in a bank if two conditions hold. First, the suit of card c2 and the suit of card c1

must be identical, and second, the rank of card c2 must be exactly one more than that of card c1.
Again we shall ignore the rules for which cards may start a bank (typically the aces) as they are
unimportant here.

Notice that these concepts depend on the properties of each card individually and each pair
of cards collectively. The terms suit, rank, suit color, suit colors differ, rank successor, and
suits identical are mentioned, and are building blocks themselves. For humans, these concepts
and functions are not difficult to compute, primarily because the rank, suit, and suit color are
indicated plainly on each card. However, to make the problem slightly richer, yet nevertheless
understandable, suppose that the deck of cards to be used does not have these standard indications.
Imagine instead that each of the fifty-two cards has solely one of the integers in the interval � 0 � 51 �
indicated, without rank, suit, or color. The rank of each card is implicitly an integer in the interval

� 0 � 12 � , and the suit is implicitly an integer in the interval � 0 � 3 � . Suits 0 and 2 are grouped into
one color, as are suits 1 and 3. This produces a problem that is simple enough to understand in its
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entirety, yet that is rich enough to lend itself to requiring many layers of knowledge. Deeply nested
knowledge is our goal here; we do not wish to hand-engineer an input representation that leaves a
problem simple enough for a few-layered (Type-1) method.

For completeness, we state these definitions formally, but we shall not attempt to learn them
exactly this way. We can define column stackable and bank stackable as:

suit(x) = (x div 13)

rank(x) = (x mod 13)

suit color(x) = (suit(x) mod 2)

column stackable(c1,c2) � (suit color(c1)
�� suit color(c2)) � (1+rank(c1) = rank(c2))

bank stackable(c2,c1) � (suit(c1) = suit(c2)) � (1+rank(c1) = rank(c2))

Notice that we have given a nested set of definitions. It is more compact to express the target
concepts in such a manner. However, in our discussion below, we shall avoid the integer and
modular arithmetic that we have employed here.

4.1 A Hand-Designed Many-Layered Network
Figure 1 shows a hand-designed many-layered network consisting of the inputs, a variety of

building block units, and the two target concepts. All the units are shown in a column of boxes
at the left, with the units of each layer shown as a group. For any unit, its output line ascends
diagonally to the right, and its input line descends diagonally to the right. An output line of one
unit is connected to the input line of another unit only where a dot appears at their intersection.
Lines crossing without such a dot are not connected. A linear threshold unit is shown as a clear
box, and a linear combination unit (no threshold) is shown as a shaded box. For example, rank(c1)
has as its inputs (following its input line diagonally downward and looking for connecting dots)
input(c1), club(c1), diamond(c1), heart(c1), and spade(c1).

The building-block concepts and functions successively map the inputs to increasingly useful
representations. Notice that there are six layers of computation, indicated by the seven groups of
units. These subconcepts are learning problems in their own right. An agent should be able to
acquire a structure of many layers that represents this knowledge. We shall see below in Section 6
that some of these units turn out to be not strictly necessary. This is simply a network that a human
might (did) reasonably construct, and it serves our purpose for the moment.

The propositional concepts for each card individually are symmetric. Looking at those for
card c1, the concept of suit corresponds to fixed sub-intervals of the domain interval � 0 � 51 � . The
less13(c1), less26(c1), and less39(c1) concepts enunciate these critical subinterval boundaries.
With knowledge of these subintervals, it is straightforward to compute the suit of c1 by testing
whether it falls into a particular subinterval, but not the next one smaller. The following table
indicates how the suits are computed from the subintervals for an integer card value c1:

less13(c1) less26(c1) less39(c1)
T T T spade(c1)
F T T heart(c1)
F F T club(c1)
F F F diamond(c1)

If one were to compute the suit value as an integer in the interval � 0 � 3 � , and reference the input
card value c1, then one could compute rank from the linear combination: c1 � 13 � suit(c1). The
weight from each suit unit subtracts the corresponding multiple of 13 from the rank unit. However,
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input(c1)

input(c2)

Bias

less13(c1)

less26(c1)

less39(c1)

less13(c2)

less26(c2)
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spade(c1)

heart(c1)

club(c1)
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spade(c2)

heart(c2)

club(c2)
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black(c1)

red(c1)

black(c2)

red(c2)

rank(c1)

rank(c2)

both_spade(c1,c2)

both_heart(c1,c2)

both_club(c1,c2)

both_diamond(c1,c2)

suits_black_red(c1,c2)

suits_red_black(c1,c2)

rank_one_or_more(c1,c2)

rank_one_or_fewer(c1,c2)

suits_identical(c1,c2)

suit_colors_differ(c1,c2)

rank_successor(c1,c2)

column_stackable(c1,c2)

bank_stackable(c1,c2)

Figure 1. Hand-Designed Many-Layered Network

in the hand-designed network above, there is no suit unit. Instead, there are four Boolean units,
one for each suit. Assuming here that TRUE maps to 1, and FALSE maps to 0, a suitable linear
combination to compute rank would be: c1 � 39 � diamond(c1) � 26 � club(c1) � 13 � heart(c1) � 0 �
spade(c1).

Each of the suit colors red and black is a simple disjunction of the relevant suits. The
suits black red unit, the suits red black unit, and the suit colors differ unit collectively compute
an exclusive-or of the suit color. The rank successor concept is somewhat opaque because of us-
ing hard-threshold units to test this relation. To test for a difference of exactly one using only
inequalities, it is necessary to test simultaneously for whether the difference in rank is at least
one and for whether the difference is at most one. If each is true, then of course the difference
is exactly one. The concept of suits identical is a disjunction of the four suit-equivalence tests.
Finally, column stackable is the conjunction of the suit colors differ and rank successor concepts,
and bank stackable is the conjunction of the suits identical and rank successor concepts.
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Figure 2: Target Concepts For Column Stackable (Large Solid Dots) And Bank Stackable (Large
Hollow Dots)

4.2 A View of the Target Concepts
Figure 2 depicts the two target concepts column stackable and bank stackable as a matrix.

Card c1 indexes the row, and card c2 indexes the column. A large solid dot indicates an ordered
pair that is column stackable, a large hollow dot indicates an ordered pair that is bank stackable,
and a small solid dot indicates a pair that is either impossible or that is not a member of either
target stackability concept. No ordered pair can be both column stackable and bank stackable.
One can see that in these two input dimensions, each of the concepts requires some care to specify
exactly. There are twelve decision regions, each with boundaries that are not aligned with either of
the axes. The depicted decision boundaries and enclosed regions are discussed below.

5 Learning From An Organized Input Stream
We would like to design an online learning algorithm that learns new concepts, using previ-

ously learned concepts as additional inputs to each learning task. Our goal is to mimic a process
of being receptive to those new ideas that are not too difficult to understand, given the current state
of knowledge. How can we model mechanisms of this kind? This section presents an illustration
of the economies that accrue from learning each layer, one after the other.

5.1 A Curriculum Algorithm
The hand-designed network of Figure 1 can be learned sequentially, one layer at a time. Each

concept or function to be learned at a layer is trained individually in a supervised manner, as though
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it were an independent learning task. It is possible to learn each concept as a single unit, one at a
time, but because the units at each layer are not connected to each other, it is also possible to take
on an entire layer at a time. The stream of training examples is processed by delivering (presenting)
each training example to its corresponding unit. One waits until the concepts at a layer are learned
sufficiently well before proceeding to the next. This supposes a good teacher or other mechanism
for organizing the training in such a sequential manner, and deciding when to proceed to the next
layer.

Although in our example the main goal for the agent is to learn the two concepts regarding
stackability, these are too difficult to learn immediately. One needs to learn the simpler concepts
first, to build a satisfactory basis for subsequent Type-1 learning. In this domain, it is important
to learn first that certain intervals of integer values are important to recognize. From that basis,
it becomes much easier for the agent to learn the suit concepts. So it goes, each new layer of
knowledge advancing the frontier of receptivity, preparing the agent to acquire the next. It is the
layering of Type-1 learning that produces Type-2 learning.

We implemented an algorithm to train the layers successively as described above. This is an
instance of a curriculum algorithm, which we shall characterize as any algorithm that is designed
to provide instruction in an order that corresponds to a workable progression of an agent’s frontier
of receptivity. When an ordered pair of cards is presented, a class label (or function value) is
included so that the corresponding unit can be trained. If the unit is on the first computational
layer, it is trained in a straightforward manner, using the appropriate error correction rule. Each
linear threshold unit is adjusted by stochastic gradient-descent to reduce the absolute error, using
stepsize 0.1, real inputs normalized by the largest magnitude for each input variable individually,
and Boolean inputs mapped onto 1 for TRUE and -1 for FALSE. Each linear combination unit is
adjusted by stochastic gradient-descent to reduce the mean-squared error, using the same stepsize,
normalization, and Boolean input encoding. If the unit is beyond the first computational layer, all
the units preceding it are first evaluated in a feed-forward manner, so that its inputs are available,
given the ordered pair of cards (Rivest & Sloan, 1994). Then the error correction rule is applied.

5.2 Experiment #1: Perfect Connectivity
In a simple experiment, all the exact dependencies of the knowledge elements (concepts and

functions modeled as linear units) were known, sidestepping any problems of connectivity. As
shown in Figure 1, the units of each layer were learned successively in 2, 2, 557, 3, 2, and 2
epochs for each layer respectively, using all the examples as the training corpus. Our interest here
is in memory organization, not classification accuracy, so there is no need to use less than the full
corpus. Total cpu time was 13.2 seconds on a 1.13-gigahertz Pentium III.

5.3 Experiment #2: Complete Connectivity
A second experiment was run in which the connectivity was not known in advance. Instead,

for each new layer of unlearned units, the output of every previously learned unit (including the
input units) was connected as an input to each unlearned unit of the new layer. In this case, the
layers were learned successively in 4, 2, 537, 4, 2, and 3 epochs respectively, in 41.6 seconds.
Even with this highly connected approach, the target concepts were still learned very rapidly when
the layers are trained in this sequential manner.

The approach of allowing all inputs or previously learned concepts to serve as an input ba-
sis for subsequent learning has the desirable property of allowing the agent to draw on whatever
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it already knows in order to understand what is new, to find regularity where it would otherwise
be obfuscated. However, an undesirable property of this massive connectivity is an ever-growing
dimensionality for subsequent learning, which will not scale to large problems. One can adopt
a method for learning in the presence of many irrelevant subconcepts (Littlestone, 1988), or im-
plement a mechanism for eliminating connections, or devise a scheme for adding connections
selectively. We present a connection elimination mechanism below, but we did not use it for our
curriculum algorithms.

5.4 Other Experiments
We conducted experiments with a variety of feed-forward artificial neural networks and back-

prop (Werbos, 1977; Rumelhart & McClelland, 1986), which are too numerous to report in detail.
In summary, putting aside speed issues, network topologies with more than two layers of hidden
units failed. This was so even when providing a topology with perfect connectivity, as given in the
hand-designed network of Figure 1. When confronting the task with the common two layers of
hidden units, convergence was also elusive. The curriculum algorithm we used was given specific
information for each of its units, and backprop was not. We are not offering a classical comparison
of any kind. Rather, we are illustrating that there are limitations to backpropagation of error, a form
of top-down learning, that are avoided with a curriculum algorithm, a form of bottom-up learning.
Reflecting on our experiments, the first layer provides decision boundaries, and the second layer
combines groups of boundaries to form decision regions. These regions, when found, are specific
to the task at hand. Would such units, if learned, constitute building blocks? We think not.

5.5 Discussion
Figure 2 depicts possible decision boundaries (and implicitly the decision regions) for the two

target card-stackability concepts. These twelve regions partition the instance space, but do not
provide multiple layers of composed knowledge. Instead, these regions are tailor-made for the two
target card-stackability concepts. While partitioning instance space for a particular task may seem
like a satisfactory accomplishment, we would rather that learning take place in a way that provides
successive levels of mapping based on using earlier concepts where possible. For example, if a two-
hidden layer network is coaxed to learn column stackable, leaving out bank stackable, decision
boundaries other than those depicted in Figure 2 may be found. For example, the boundaries
(horizontal and vertical in the figure) might instead transect the bank stackable regions (have slope
-1), making them useless for the subsequent purpose of learning bank stackable.

The decision boundaries that are shown in Figure 2 would happen to work for either task
alone, because they conveniently bound regions that are relevant to both stackability concepts.
Alas, learning one of the tasks alone may not result in such serendipitous boundaries that are
useful for each. Examining this figure, we see that a 2/16/12/2 network is capable of representing
both of the target solitaire concepts. There would be two input units, sixteen computational units at
layer 1 (for sixteen region boundaries), twelve computational units at layer 2 (for twelve regions),
and two output units, each computing a disjunction of the needed regions. Although it appears in
the figure that there are four lines of fat black dots, those lines are punctuated with some thin black
dots, corresponding to fact that no king can be stacked onto another card (for column stackable).
The three horizontal and three vertical lines are boundaries that are used to carve out these illegal
cases, seen at the upper left dot of some of the apparent squares in the figure. Similarly, there are
four regions along the major diagonal for bank stackable, because an ace cannot be placed onto
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another card.
As we noted above, the ability to represent something does not mean that learning will suc-

ceed. Indeed, theoretical results from computational learning theory show that we should not
expect a global training algorithm to perform well on this problem. Notice that each of the two
outputs in the 2/16/12/2 network architecture described above is in a k-term DNF format. Pitt
and Valiant (1988) proved that k-term DNF concept representations cannot be efficiently learned.
Although an equivalent k-CNF representation may be learned efficiently, converting from k-term
DNF to k-CNF causes a worst case exponential explosion in the representation size.

Returning to Figure 1, imagine lopping off the bank stackable unit and its unique prede-
cessors. That would excise bank stackable, suits identical, both spade, both heart, both club, and
both diamond. Now, to learn bank stackable, it would be necessary to learn just these six concepts.
The modularity of the subconcepts is apparent, making the learning of bank stackable relatively
easy, given the existing knowledge of column stackable.

To illustrate this point further, suppose that we wanted to reuse these networks for recognizing
concepts in poker. The network in Figure 1 contains many concepts that can be applied to the new
problem. For example, rank successor is needed to evaluate which elements of a possible straight
may be present in a hand. Similarly, suits identical can be used in evaluating a flush. The same
cannot be said of the few-layered networks discussed above. Few, if any, of the divisions are
relevant to the new concepts, forcing learning to begin anew.

For sequential Type-2 learning to work well, the decomposition of the presumably final targets
into useful subconcepts must already have occured. Does an agent ever really learn a final target?
One must learn the building-block knowledge for future tasks yet to be encountered. In some
sense this seems impossible, but it is only a matter of viewpoint. It is only in the top-down-
decomposition view of the world that time must run backward. In the bottom-up-composition
view, building blocks are created based on experience. A new block is learnable if and only if the
prerequisites are in place. Learning simple useful concepts in a many-layered organization lays the
foundation for whatever else may come.

6 Learning From An Unorganized Input Stream
We present and discuss our novel STL algorithm, which demonstrates a mechanism for or-

ganizing concepts in terms of each other at the same that they are acquired. This models quite
directly the notion of an advancing frontier of receptivity, even without a teacher prescribing the
layering.

Although an agent can benefit greatly from receiving information in an order that conforms
to the agent’s receptivity, one cannot expect life’s experiences to be ordered so well. How can
learning of multiple layers of building-block knowledge work in the absence of a good ordering of
experiences? One approach is to try at all times to make sense of all that one can. This entails great
inefficiency, but it can account for learning useful building blocks. Agents make different use of
the information that they receive, presumably because their current knowledge differs, giving each
its own frontier of receptivity. For example, two people attending the same lecture will hear and
understand it differently. How can this process be modeled?

6.1 A Stream-To-Layers Algorithm
Consider again the two target concepts column stackable and bank stackable. Suppose now

that when an ordered pair (c1,c2) instance is presented, a set of observed relations is also stated,
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each as a positive or negative atom. For example, consider the following instance, in which c1 is
bound to 6 (the 7 � ) and c2 is bound to 8 (the 9 � ):

�
c1/6,c2/8 � , � (less13(c1), less26(c1), less39(c1), spade(c1), � heart(c1), � club(c1),

� diamond(c1), black(c1), � red(c1), rank(c1,6), less13(c2), less26(c2), less39(c2),

spade(c2), � heart(c2), � club(c2), � diamond(c2), black(c2), � red(c2), rank(c2,8),

both spade(c1,c2), � both heart(c1,c2), � both club(c1,c2), � both diamond(c1,c2),

� black red(c1,c2), � red black(c1,c2), � rank one or more(c1,c2), rank one or fewer(c1,c2),

suits identical(c1,c2), � suit colors differ(c1,c2), � rank successor(c1,c2),

� column stackable(c1,c2), � bank stackable(c1,c2)).

In the following instance, c1 is bound to 46 (the 8 � ), and c2 is bound to 34 (the 9 � ):

�
c1/46,c2/34 � , � ( � less13(c1), � less26(c1), � less39(c1), � spade(c1), � heart(c1), � club(c1),

diamond(c1), � black(c1), red(c1), rank(c1,7), � less13(c2), � less26(c2), less39(c2),

� spade(c2), � heart(c2), club(c2), � diamond(c2), black(c2), � red(c2), rank(c2,8),

� both spade(c1,c2), � both heart(c1,c2), � both club(c1,c2), � both diamond(c1,c2),

� black red(c1,c2), red black(c1,c2), rank one or more(c1,c2), rank one or fewer(c1,c2),

� suits identical(c1,c2), suit colors differ(c1,c2), rank successor(c1,c2),

column stackable(c1,c2), � bank stackable(c1,c2)).

This may be more information than is strictly necessary because the agent may already know
how to infer some of these atoms from (c1,c2) due to earlier successful learning of some of the
building block concepts. In terms of level of discourse, this would be a mismatch between sender
and receiver. Information that the agent could already infer is irrelevant, as is information that is
currently too difficult to absorb. Providing such irrelevant information is a matter of communica-
tion inefficiency, which is not a major concern of ours here. We simply provide the truth values for
all the stated atoms, thereby avoiding all the problems related to discourse.

We assume that the stream of observations holds the atoms that correspond to the concepts.
One might say that an important segmentation of the agent’s observations has therefore already
occurred. This is so, and is one of the basic assumptions that we discussed above. However,
an agent’s waking hours include a stream of observations, which are represented in some as-yet
unknown form. Our world provides a stream of sensory and perceptual information, and our
interest is in being able to learn from such a stream. To this end, we manufacture such a stream,
putting aside the problem of what mechanisms in an agent could produce such a stream. Our
stackability example already assumes knowledge of integer values and their ordering. The stream
of information that washes over an agent can provide primitives and higher level information, and
the STL algorithm described below suggests one way in which this information can be assimilated
and organized over time.

Can an agent learn the subconcepts and organize them into layers that correspond to compu-
tational dependencies? Yes, if one is guided by an assumption that only simple (Type-1) learning
mechanisms are available to learn and refine a knowledge element. Table 1 shows the STL (stream
to layers) algorithm. For every predicate or function name observed, the algorithm updates the
unit as described here. If the unit does not yet exist, it is created and added to the list of unlearned
units, which is initially empty. Its inputs are initially the distinguished input values as provided in
an observation. For each set of atoms presented as a training instance (observation), the algorithm
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Table 1. The STL Algorithm

Input: A stream O of observations, each of the form ot
��� Bt � Lt � , where Bt is a set of variable bindings

and Lt is a conjunction of literals.
Initially: U � /0, where U is the set of all defined units. M � /0, where M is the set of all learned units
or base inputs.
On-line Algorithm: For each observation ot :

1. Compute value of every uk � U using bound input variables.

2. M � M � �
θ ��� Vt , where θ is the distinguished bias input which is always 1, and Vt is the set of

input variables in Bt .

3. For each literal l j � Lt : (Let A denote predicate or function to be learned corresponding to atom
name in l j.)

(a) If there is a numeric argument ai of l j then A is a linear combination unit with target T � ai.
Otherwise, A is a linear threshold unit; if l j is positive then T � 1 else T �	� 1.

(b) If not A � U then create unit for A, U � U � �
A � , set A 
 to be undefined, Ainputs � M,

Aweights � W , where each wk is sampled from uniform density over [-0.05,0.05].

(c) Update unit A using target T , appropriate gradient-descent correction, stepsize (0.1 for com-
bination, 0.01 for threshold), input values each normalized to maximum magnitude 1.0.

(d) If A has been learned sufficiently well (see discussion) then M � M � �
A � .

(e) If A is unlearnable over Ainputs (see discussion) then N � M � Ainputs, Ainputs � Ainputs � N,
initialize new weights for new inputs N as in Step 3b, reset A as learnable, go to Step 3c.

(f) If A � M and A has some inputs not tried for deletion then:

i. If A 
 is undefined (see Step 3b) then A
�� A (copy of A), remove one of A 
inputs selected
at random and mark the deleted input as ‘tried’.

ii. Update A 
 as in Step 3c.

iii. If A 
 has been learned sufficiently well, as in Step 3d, then M � M � �
A � , U � U ��

A � , discard A, set A to refer to A 
 , set A 
 to be undefined, M � M � �
A � , U � U � �

A � .

iv. Otherwise, if A 
 is unlearnable over A 
inputs, as in Step 3e, then discard A 
 , set A 
 to be
undefined.

attempts to learn each atom as a linear threshold unit or an unthresholded linear combination. For
an atom with only bound variables as arguments, the atom indicates a Boolean concept, and the
positive or negative value indicated for the atom (absence/presence of negation connective) is its
training label. However, for an atom with a single numeric argument, the atom indicates a numeri-
cal function, with the numeric argument being its training value. In this model, a function can have
at most one numerical argument.

The STL algorithm tries to learn all the concepts/functions that come its way. Of course
some concepts are learned more easily (sooner) than others. For example, the concepts that one
sees in the second layer of Figure 1 will presumably be learned reliably before the others. Any
concept/function that is learned successfully has its output value connected as an input to those
concepts/functions that have not yet been learned reliably. This has the effect of pushing the as-
yet-unlearned concepts to a deeper layer. This process continues, always pushing the unlearned
concepts deeper, and providing each with an improved basis. This models an advancing frontier of
receptivity. The agent is receptive to what can be learned simply, given what has already been ac-
quired successfully. This approach embodies an assumption that those concepts that can be learned
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early should be considered as potential building blocks (inputs) when learning other concepts later.
The STL algorithm operates in an online manner. The algorithm must make two important

decisions. The first is to determine when a unit has successfully acquired its target concept, and
is therefore eligible to become an input to other, unsuccessful units. The criterion for successful
learning in STL is that the unit must have produced a correct evaluation for at least n consecutive
examples, where n � 1000VC

�
u � for unit u. The VC dimension of a linear unit is simply d

�
1 for

a unit with d inputs. We chose 1000 empirically for the problems at hand. We are examining how
to formulate a more principled criterion.

The second decision that STL must make is to determine when a unit cannot learn a tar-
get concept sufficiently well. One possible approach would be simply to connect a trained unit
to an untrained unit as soon as a trained unit becomes available. This is unnecessarily aggres-
sive; one unit may train faster than another even though both are capable of learning given their
current input connections. STL relies on sample complexity to determine when a unit requires
additional input connections. If a unit is presented m examples without satisfying the above learn-
ing criterion, the unit is considered to have failed and new connections are added before training
resumes. The number of required examples is m � c

ε2

�
VC

�
u � �

ln
� 1

δ ��� with c � 0 � 8, confidence
parameter δ � 0 � 01 and accuracy parameter ε � 0 � 01 for thresholded linear units. The number
of examples required for an unthresholded linear combination is described by a similar formula
m � 128

ε2

�
log2

� 16
δ � �

2Pdim
�
u � log2

� 34
ε ��� where Pdim

�
u � is the pseudo-dimension of u and the con-

fidence δ � 0 � 01 and accuracy ε � 0 � 1 (Anthony & Bartlett, 1999).
STL adds connections from all previously learned units to a unit that is not currently learnable.

Units representing high-level linear functions quickly acquire the input connections required for
successful learning. As discussed above, a disadvantage to this “connect-to-everything” approach
is that initially units will have many more connections than is strictly necessary. This is particularly
true of units representing high-level concepts. To combat this problem, STL employs a novel
method for removing unnecessary input connections from each unit that it has successfully learned.

When an individual unit satisfies the criterion for successful learning, it begins the process
of removing any inputs that are not required for correct evaluation. The unit first generates a
copy of itself, selects one of the input connections at random, and removes it from the copy.
Thus, the copy is a duplicate of the unit minus one input. The duplicate is then trained, and if it
satisfies the learning criterion, the duplicate replaces the original unit and the process continues.
Otherwise the failed duplicate is discarded and the removal process continues with a newly created
duplicate. Each input connection, including the bias, is tested exactly once for a total of d

�
1

removal attempts per network unit. The bias connection is always tested last, in order to prevent
spurious relationships among other inputs from conspiring to make the bias appear falsely useless.

At first glance, training d
�

1 copies of each unit in the network may appear to be an overly
expensive solution to the connectivity problem in STL. Indeed, the cost of removing unneces-
sary connections from the network outweighs the cost of generating the initial (learned) network.
However, several aspects of the connection removal process work together to make the price quite
reasonable. First, each duplicate is initialized with the same weights (minus one input) as the
learned unit. This means that the duplicates begin training with a very beneficial set of weight val-
ues, and that training proceeds very quickly when the removed input is irrelevant. Second, STL’s
reliance on simple concepts and simple learning units means that most of the concepts in a network
will depend on only a small number of inputs. Most of the inputs to a given unit will be irrelevant,
therefore most of the d

�
1 copies of the unit will train quickly. Finally, the process of removing
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Figure 3. STL Using All The Hand-Designed Concepts

connections takes place after the unit has successfully learned. Thus, the concepts quickly become
available for use by higher-level concepts, and only afterward spend computational resources op-
timizing their representations.

6.2 Experiment #1: Using All The Hand-Designed Concepts
We presented all distinct (c1,c2) pairs and the corresponding atoms as training instances.

Although STL is intended to be an online algorithm, we have only a finite amount of data, 52 � 52 �
2704 observations. An infinite stream of input data was simulated by treating this collection of
observations as a circular list. This is very much like an offline algorithm making multiple passes
over the data, each pass being an epoch. However, the algorithm has no knowledge of epoch, and
it operates in an online manner.

The algorithm learned all concepts and functions in 17,026,156 instances, requiring 47:40
minutes (47 minutes and 40 seconds) on a 1.13-gigahertz Pentium III, and 132 total connections.
The network had learned perfectly after 8:39 minutes, using the remaining time to remove con-
nections. The time to complete the learning is very close to the 8:52 minutes that is used when
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Figure 4. STL Using A Reduced Set of Hand-Designed Concepts

connection elimination is disabled. Notice that the time to complete the learning is actually lower
when connections are removed when possible. The constructed network, shown in Figure 3 has
four computational layers, and a different knowledge organization from that of the hand-designed
network. Remarkably, the rank, suit colors differ, suits identical, and rank successor units are
learned but not used (no output lines). It is somewhat unsatisfying to see these building blocks as
superfluous. It is explained in part by the difficulty in learning. Something that takes much longer
to learn, such as rank, will be pushed to a deeper layer. Meanwhile, a different basis for learning
an advanced concept may be found.

The integer interval units, such as less13, were not needed for learning the suit concepts. The
spade and diamond suits can be learned easily without the interval units. After spade has been
mastered, heart can be learned readily because it is any card value less than 26 that is not a spade.
Similarly, club can be learned after diamond has been acquired. None of the interval concepts were
required for learning the suits.

6.3 Experiment #2: Using A Reduced Set of Hand-Designed Concepts
Having been shown that the interval units were not needed, we reran STL while leaving them

out. Figure 4 shows the resulting network, which was learned in 13,232,552 observations, taking
31:49 minutes, with correctness achieved after just 4:48 minutes. There are six computational
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Figure 5. STL total connections while training the stackability targets.

layers with 116 connections. Notice that black(c1) is learned without depending on the club(c1)
concept. This makes sense, given that spade(c1) being true would cinch it, or if c1 be neither spade
nor diamond, then a simple test for c1 being in the club range will suffice. It is less appealing
semantically, but it is sensible. The rank units are used, but both club, rank one or more and
rank successor are not (no output lines).

Of interest is the relationship between the number of instances presented to the network and
the number of connections in the network when connection removal is enabled. Figure 5 shows
a graph of training instances presented versus connections in the network. The vertical line rep-
resents the point at which all units in the network are considered sufficiently learned. Notice the
sharp rise and fall in connections during early training as connections are simultaneously added to
unlearned units and removed from learned units. The six peaks in the graph correspond to the six
computational layers in the resulting network. Finally, a majority of the instances are presented
after the units in the network have already been learned.

6.4 Discussion
When exposed to a stream of observations of various Boolean predicates and linear functions,

the STL algorithm can learn these predicates and functions, organize them into a layered network
of building blocks, and repeatedly advance its level of receptivity. Network organization occurs
naturally as a result of simple Type-1 learning mechanisms. It is somewhat surprising that simple
Type-1 mechanisms are apparently needed to build efficient deeply layered knowledge structures
that represent difficult Type-2 concepts.

7 The Two-Clumps Problem
The two-or-more clumps problem is a synthetic Boolean problem in which the n inputs are

arranged sequentially, x0 � � � � � xn � 1. The objective of the problem is to decide whether there are
two or more groups of adjacent “on” inputs. The input string is circular, so that x0 and xn � 1 are
adjacent. As an example of the two-or-more clumps problem with n � 8, the input string 00110100
is a positive instance while 00111110 is a negative instance. Several different learning algorithms
have been applied to the two-or-more clumps problem, e.g Mezard and Nadal (1989), Frean (1990),
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Figure 6. A two-or-more clumps network trained via STL.

and Redding (1993).
The essence of the problem is to count the number of edges, or on-to-off transitions, encoun-

tered while scanning along the string of bits. A two-layer network with n nodes in the hidden
layer acting as edge detectors and a single output element implementing a threshold-2 function
accurately represents the target concept. Data reflecting this structure was generated for n � 25
according to Monte Carlo simulations as described by Mezard and Nadal. Eight sets of training
data, with 50, 100, 200, 300, 400, 500, 600 and 800 instances, along with a set of 600 instances
for testing, were generated independently. Each set had a mean of 1.5 clumps per instance.

Five different STL networks with 25 inputs and 26 concepts were each trained on the 600
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Figure 8. Two-or-more clumps accuracy for several algorithms.

instance set of two-or-more clumps data. The average overall training time was 39:28 minutes, the
average number of training instances was 9,227,762, and the average number of network connec-
tions was just 104, which is just three more than the ideal network structure. A correct network
was achieved after 1:36 minutes on average. Figure 6 shows a typical network structure after con-
nection removal. All of the edge-detection units have learned their concepts exactly. Each edge
unit has pruned every irrelevant input, and found the correct edge pattern. The top-level threshold
concept very nearly implements the correct concept, including only a few irrelevant inputs.

Figure 7 shows a graph of training instances presented versus the number of network connec-
tions. The single peak indicates the addition of connections to the top-level disjunction, while the
sharp drop during early training corresponds to the fast learning and optimization of the edge de-
tector concepts. The large number of instances required to remove connections from the top-level
concept reflects the large number (25) of relevant inputs.

In a second experiment, an STL network was trained on each of the eight sets of training
data and then tested on the 600-instance testing set. Figure 8 shows the accuracy of each STL
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network along with the published accuracy measures from the Tiling algorithm (Mezard & Nadal,
1989), the Upstart algorithm (Frean, 1990), and the Constructive Higher-Order Network (CHON)
algorithm (Redding, Kowalczyk & Downs, 1993). Recall that STL is given training information
for the edge units that the other algorithms are not. If one wants to learn to recognize clumps, a
useful prerequisite is to learn to recognize edges. Notice how STL performs comparatively well
even with only 50 training instances and quickly rises to achieve 99% accuracy at just 300 training
instances. STL eventually achieves a perfect 100% accuracy at 800 training instances.

8 Applying STL to a Larger Task
Can STL scale up to richer input streams? As a simple test, we aggregated the card stackability

state and the two-or-more clumps state into one. An ordered pair of cards is represented by two
integer variables, and a clumps state consists of 25 Boolean predicates, so the aggregate state has
27 components. The card pairs are sampled randomly from the complete space of pairs, and the
25-tuples are sampled randomly from a single large sample of the space of 25-tuples as discussed
above.

The resulting network (omitted due to size), consists of eight layers of computation. To learn
all the predicates and functions correctly required 31,438,449 observations and 5:31:28 hours of
cpu, with another 81,526,067 instances and 11:19:02 hours of cpu to conclude the connection
reduction process. The separation of units by relevant inputs is quite good. No units for the
stackability concepts are inputs to the clumps concepts. For the stackability concepts there are still
70 useless connections, of 51x27=877 possible.

The main bottleneck is the problem of determining relevant inputs for each unit, which is the
classic single-unit feature selection problem. Although our removal method is of lower computa-
tional cost than previous methods (Stracuzzi & Utgoff, 2002), it is nevertheless doomed computa-
tionally. Methods for adding inputs are of the same complexity. Indeed, no scheme that entertains
all possible inputs with equal probability will scale up for lifelong learning. We expect that a
workable approach will be to take into account constraints imposed by the physical location of
connections, and consideration of only nearby connection points (Quartz & Sejnowski, 1997).

9 Summary and Conclusions
We examined two approaches for modeling many-layered learning. The first involves learning

from a curriculum, and simply illustrates that difficult problems can be learned when broken into
a sequence of simple problems. It is remarkable that so much of the human academic enterprise is
devoted to organizing knowledge for presentation in an orderly graspable manner. This fits well the
supposition that humans do indeed have a frontier of receptivity, and that new knowledge is layed
down in terms of old, to the extent possible. We do not observe our teachers starting a semester
with the very last chapter of a text, and then hammering away at it week after week, waiting for all
the subconcepts (hidden in the earlier chapters) to form themselves. Instead, teachers start quite
sensibly at chapter one and progress through the well-designed layered presentation. Although
agent autonomy is a laudable goal, in moderation, as scientists we impose a serious handicap when
we deprive our agents of books and teachers (including parents).

The second approach dispensed with organized instruction, offering a possible mechanism
for extracting structure from an unstructured stream of rich information. We showed in the STL
algorithm how adoption of simple Type-1 learning mechanisms can learn and organize concepts
into a network of building blocks in an online manner. As simple concepts on the agent’s frontier
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are mastered, the basis for understanding grows, enabling subsequent mastering of concepts that
were formerly too difficult. The approach accepts the seeming paradox that our apparent ability to
do just Type-1 learning and layering is the bedrock of our intelligence because it produces Type-2
learning.

An agent can benefit greatly by following a curriculum. Were STL to process a stream that
was generated to contain progressively higher level information, it would spend a great deal less
time futilely trying to master concepts that were currently hopelessly difficult. Exposing an agent
to just what should be acquired next helps focus effort, and can lead to a better structuring of the
learned knowledge.

While it has been informative for us to explore how to model learning of knowledge in many
layers, some of the problems suggest new approaches. For example, STL relies on a kind of race
to produce a knowledge organization. Whatever can be learned next using simple means achieves
the status of building-block, which means it has earned the right to be considered as an input to all
units yet to be learned. We have noted that this can drive a mechanism for organizing knowledge
as it is acquired. However, this strategy does not necessarily lead to the best possible organization.
Furthermore, the successfully learned portion of an organized structure becomes statically cast.
We would rather have a mechanism in which each unit can continue to consider which other units
will serve it best as inputs, and revise its selection of inputs dynamically.

Finally, while we have advocated a building block approach that is designed to eliminate
replication of knowledge structures, one can see quite plainly in Figure 1 that many concepts
learned for just one card were learned identically for the other. A mechanism for applying learned
functions to a variety of arguments would be highly useful. Much of the work in inductive logic
programming addresses this problem. It will be useful to explore further how variable binding
mechanisms can be modeled in networks of simple computational devices (Valiant, 2000a; Valiant,
2000b; Khardon, Roth & Valiant, 1999).

Our main results are an argument in favor of many-layered learning, a demonstration of the
advantages of using localized training signals, and a method for self-organization of building-
block concepts into a many-layered artificial neural network. Learning of complex structures can
be guided successfully by assuming that local learning methods are limited to simple tasks, and
that the resulting building blocks are available for subsequent learning.
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