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Abstract: To build an evaluation function for game-playing, one needs to construct
informative features that enable accurate relative assessment of a game state. This
chapter describes the feature construction problem, and suggests directions for dealing
with shortcomings in the present state of the art.

1 Introduction

An essential ingredient of a good game-playing program is the ability to approximate well
the relative utility of the game states that it may encounter in actual play or look-ahead search.
To approximate well, the program requires features that measure strengths and weaknesses of a
position, and a method of combining these feature values into a single number that indicates the
overall rating of the state relative to others. Features are needed whenever it too difficult to define
a good evaluation over the input variables, as is typical. Features are also needed whenever search
cannot reach terminal positions from which to back up true payoffs. The state variables, also know
as input variables, form the base-level representation of state. A feature is a function of state
variables or other features.

When in a particular state, and confronted with a choice of successor states, one evaluates each
successor and selects one with the best value, with the possible exception of electing to explore
some apparently suboptimal state. In addition, one may look further ahead than the immediate
successors, presumably producing a better estimate of the value of the node than one would obtain
without looking ahead. For simplicity, we assume that one has a model of the domain, so that
modeling the successor states is possible. This is not strictly necessary, as one can represent a
successor state implicitly as the current state conjoined with the name of the action that would be
used to produce the successor, as in Q learning (Watkins & Dayan, 1992).

2 Evaluation Functions

There are four major aspects of designing a good evaluation function. These four processes
interact, and do not necessarily occur in any fixed order. One needs to:

1. create a set of features that can measure the presence or absence of one or more intrinsic
properties of a state,

2. choose a functional form (model class) that maps the various feature values to an overall
scalar value,

3. provide game payoffs, for the purpose of inferring target values for the states encountered,
and

1The correct citation for this article, (C) 2001 Copyright Nova Science Publishers, is: Utgoff, P. E. (2001). Feature
construction for game playing (pp. 131-152). In Fuerenkranz & Kubat (Eds.), Machines that learn to play games.
Nova Science Publishers.
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4. select a method for adjusting parameters that are part of the functional form.

Our focus is on the first of these four design aspects, the problem of creating useful features.
To a large degree, it is possible to make simplifying assumptions or rely on existing methods for
the other three. Due to the interactions, one needs to consider them all, but our interest is primarily
in feature construction. For example, for the functional form, one can use a linear combination of a
particular set of features. For the training signal, one can use temporal difference learning (Sutton,
1988) to infer expected utility of a state. Finally, to adjust the parameters of the functional form,
one can descend the gradient of an error function with respect to the adjustable parameters (Press,
Flannery, Teukolsky & Vetterling, 1988; Freeman & Skapura, 1991). Other choices for these three
items may be preferable in some settings, but those can be determined in the context of a particular
scheme for feature construction.

For the purpose of selecting a best move, accuracy is important only to the extent that it affects
move selection. It may be acceptable for the absolute assessment of each state to be flawed if the
relative comparison of such values nevertheless gives the best value to the best move (Berliner,
1979; Utgoff & Clouse, 1991). The problem of finding a useful set of features may be somewhat
simplified by taking relative assessment into account, but the fundamental problem remains.

3 FeatureOverlap

A critical design choice is whether to construct features that overlap or that are disjoint. Sup-
pose that Boolean feature f1 is true for some set of its inputs, and similarly that Boolean feature
f2 is true for some set of its inputs. If the sets covered by these two features intersect, then these
features overlap, and otherwise they are disjoint. Suppose that f1 corresponds to color(x)=red and
that f, corresponds to shape(x)=square. In this case it is natural to assume that the two features take
on values independently of one another. If the presence of f1 contributes w; to the evaluation, and
the presence of f, contributes wy to the evaluation, then in this overlapping model, joint presence
of f1 and fo contributes w1 + w> to the evaluation. In the alternative model of disjoint features,
each of the fixfo combinations would be a separate feature with its own individual contribution.
For example, say g3 = f1 A fo. With disjoint features, only one can be true at any time, and its
contribution to the evaluation is the sole contribution, and hence is the evaluation. When g3 is
true, the evaluation is wz. A common representation for an evaluation function based on disjoint
features is a cellular lookup table or a tree-structured lookup table (Breiman, Friedman, Olshen &
Stone, 1984).

Our interest here is in overlapping features. One can compensate for dependencies by includ-
ing higher order terms as needed. For example, if f1 A f> should evaluate to 7 instead of 8, then
one can include another feature f3 = f1 A fo with weight —1 We would like to detect the presence
or absence of each intrinsic property of a state by evaluating a Boolean feature. Target functions
(true relative utility) for game playing are typically highly irregular over the state variables. One
can only hope to turn the combinatorics of overlapping features to one’s advantage. The essential
aspect of a good feature is that it applies to a set of states that share some intrinsic property. It may
also be the case that a feature is defined with some amount of error in its coverage. The ultimate
test of a feature’s worthiness is whether the game-playing program can achieve higher expected
payoff with the feature than without (Berliner, 1984).

Before putting aside disjoint features, it is worth noting that work on Othello has produced
a practical hybrid approach. For Othello, it has become common to use tables for subsets of the
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Figure 1. Single Layer of Features

input space, and to combine the individual values linearly. For example, Rosenbloom’s (1982)
edge-tables represent each of the possible 3% = 6,561 edge configurations individually. Each edge
configuration indexes a table in which its associated weight is stored. This is equivalent to treating
each edge as 6,561 boolean features, exactly one of which can be true at any time. The table stores
the associated weight to contribute to the evaluation of the position. By using the same table for
each of the four edges, one has in effect 4-6,561 = 26,244 boolean variables. These boolean edge
features are included in the set of features along with others that are not table-based. BILL (Lee &
Mahajan, 1988) extends the edge table to include the two neighboring X-squares. LOGISTELLO
(Buro, 1998) extends this idea to other informative subsets of the instance space.

Nonoverlapping features can be very effective in discriminating useful subsets of instances.
We suspect that in the longer run, it will be more useful to be able to identify overlapping features
that afford the same discriminations. This might save space, but more importantly it would provide
some insight on why a particular instance has the value it does.

4 Constructing Over lapping Features

Devising and understanding methods for automatic feature construction is a longstanding
research quest. Constructing good features is the major developmental bottleneck in building a
system that will make high quality decisions. We must continue to study how to enhance our
ability to automate this process. This section briefly reviews the state of the art. At present, there
are four broad categories of methods for constructing features, which are discussed below. First
is parameter tuning, second is higher-order term expansion, third are quasi-random methods, and
fourth is knowledge-derivation.

4.1 Parameter Tuning

The most popular method for constructing features automatically is to use a layered feed-
forward artificial neural network with at least one layer of hidden units, as suggested in Figure
1. Each unit is an element that computes a simple nonlinear function, e.g. sigmoid, of its inputs.
By treating the output of a unit as the input to one or more other units, one obtains a network
of computing elements that can in principle compute an arbitrarily complicated function of its
inputs. The power of this approach is that the hidden units are defined parametrically, and that the
parameter values can be learned by descending the error surface with respect to these adjustable
parameters (Werbos, 1977; Rumelhart & McClelland, 1986). Error in the evaluation function is
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distributed to the hidden units, which are then each updated to reduce hidden unit (feature) error.

While this kind of approach is quite useful for many problems, it suffers several drawbacks.
First, such an algorithm can become trapped at a local minimum when descending the error gra-
dient, though for some applications a local minimum may be useful nevertheless. Second, such
an algorithm can be very slow, sometimes requiring weeks to months, or longer, to reach its best
performance level. Speed would be less of an issue if one could be sure the algorithm would not
become trapped at a local minimum. That is the main problem, that the algorithm can fail to find
features that it would need to achieve sufficient accuracy. To become trapped at a local minimum
is to have a feature definition settle at a local decision boundary that is not as useful as another
boundary. The algorithm cannot revise the feature definition because any such attempt would in-
troduce error (temporarily), which the algorithm is designed to minimize. To overcome this, one
must repeatedly re-engineer the input variables carefully until the program can learn adequately.

Parameter adjustment of hidden unit input weights is the fundamental aspect of this approach
to feature construction. An associated task is to determine the network architecture. How many
hidden units shall there be, and how shall the units be connected? Methods have been devised
for modifying the network architecture during learning. This makes adding (or deleting) hidden
units an explicit part of the procedure, instead of having the system builder implement a static
architecture. Despite the appeal of automating construction of the network topology, the problem
of becoming ensnared at a local minimum during gradient descent is not eliminated.

Ash’s (1989) dynamic-node-creation algorithm DNC inserts a new hidden unit whenever
network error asymptotes at an unacceptably high level. Hanson’s (1990) meiosis network tracks
variance for each input weight, and splits a unit that has the highest variance input weight into
two, moving each away from the other at that moment. Similarly, the node-splitting method of
Wynne-Jones (1991) detects when the weights of a hidden unit are oscillating, and splits the most
oscillatory unit into two. Fahlman and Lebiere’s (1990) cascade correlation method learns the
weights of just the single output unit. When it stabilizes, if the error is too high, its weights are
frozen, and a new output unit is created, with inputs from all of the existing frozen units. Frean’s
(1990) UpsTART algorithm finds two-class convex boundaries by repeatedly adding new linear
threshold units (Itu) in such a way as to correct classification errors of frozen Itus.

In reinforcement learning, it is common to set up a problem so that the program (agent) learns
from a single reward or punishment. Suddarth (1991) and Caruana (1997) have each shown that a
richer training signal greatly facilitates the learning task. For example, in a game if one provides
just the game value for a given state, one has much less information than if one also provides the
locations of the legal moves. Knowledge of the legal moves is typically implicit in the problem,
but by making it an explicit part of the training signal, the agent can and must learn much more.
This is very powerful when, for example, the assortment of legal moves bears on the game value.
This indicates more generally that learning features for one task may aid learning another, which
is discussed below.

4.2 Higher Order Expansion

One can construct a feature as a conjunction of a subset of the Boolean input variables. The
empty conjunction is always true, and therefore covers (is true for) all input examples. Each
conjunction of just one input variable is true if and only if the input variable is true in the example.
One can create a feature for each distinct pair of input variables. Generally, one can produce terms
of increasingly higher order, each one defining a feature. If one includes all possible conjunctive
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features, then one can represent any evaluation function. Although this kind of completeness seems
appealing, an accurate function may require exponentially many features, making it intractable in
general. One can use a connective other than AND. For example, using EXCLUSIVE-OR produces
a Walsh expansion (Duda & Hart, 1973).

One can expand selectively, by constructing just those features (terms) that one predicts will
add accuracy to the evaluation function. For example, consider the ELF algorithm (Utgoff & Pre-
cup, 1998). The input variables must be Boolean, which means that discrete many-valued variables
or continuous variables must be mapped to Boolean beforehand. The approximator starts with the
most general feature (true for all inputs), and tries to learn a weight for it, which amounts to ap-
proximating the target evaluation function by a constant. The algorithm responds to a stream of
(exanpl e, val ue) pairs by adjusting its weights to reduce error for each pair encountered.
During this series of corrections, it accumulates for each individual feature an association of er-
rors with its input values. When the weights stabilize, i.e. reach a locally optimal neighborhood
(Utgoff, 1989), ELF constructs a new feature that is a specialization of the one with the strongest
error/input association. The old feature and the new specialized feature are able to discriminate
instances that differ in the input variable of interest, enabling refinement of the evaluation func-
tion. The ELF approximator can work well for some problems, but it tends to bog down as training
proceeds. There are two problems. The first is that ELF removes the largest errors first. As smaller
error residuals occur, it becomes difficult to differentiate their causes. Second, as new features
are constructed, the dimensionality of the problem rises, requiring longer training periods for the
weights to stabilize.

A second example of an algorithm the expands selectively is the Vu (value unification) algo-
rithm (Utgoff & Stracuzzi, 1999). Through a series of best-first searches, the algorithm repeatedly
identifies a feature that covers the largest subset of the training examples that does not include any
correctly evaluated example. The conjunctive term that defines that subset is adopted as a new
feature. This is useful because a weight can be associated with the new feature that will eliminate
the error for at least one example. The weight is computed directly in a manner that eliminates
apparent error for a large subset of the examples covered by this new feature. The algorithm
halts when all examples evaluate correctly. This is an unusual algorithm, combining mechanics of
covering algorithms with the manipulation of additive values needed to produce an evaluation. It
reduces error in a concentrated manner, rather than being guided by a global error measure. It can
find large feature sets quite quickly. Nevertheless, it is brittle and it relies on searching a space of
conjunctively defined features.

An important lesson from the work on Vu is that one should not be content with a sufficient
number of layers of conjunctively defined features. Although it is possible to prove representational
adequacy, this does not mean that one has achieved the best possible compression. For example,
a VU variant compressed the 5,477 possible positions of tic-tac-toe into a single layer of 2,779
conjunctive features, which is only about 2:1. As discussed below, one can do much better.

Series expansions are generally unwieldy, producing an explosion of features, many of which
may be useless. One can attempt to produce the terms of an expansion more selectively, but such
approaches eventually bog down.

4.3 Quasi-Random Methods

From the study of genetic algorithms (Goldberg, 1989), one might expect a method using
feature recombination (crossover) and mutation to do well. Our earlier attempts to apply this kind
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of approach (GA and non-GA variants) did not do nearly as well as the ELF algorithm. Using error
to indicate where and when a new feature is needed is a more direct approach. If one is hoping to
identify intrinsic properties shared by a large number of domain elements, then it appears that one
needs to specialize more methodically.

4.4 Knowledge Derivation

If one adopts the view that all the knowledge important to state evaluation is entailed in the
task definition, then one can start with a formal statement of the task domain, and attempt to
decompose it into useful measurable elements (Fawcett, 1993; Callan, 1993). Fawcett’s (1993)
ZENITH system uses a declarative theory that defines the problem-solving state space, the move
operators, and the goal that the learner endeavors to achieve. The system then applies its own
transformation operators that synthesize features from this declarative knowledge. ZENITH maps
a logical term or clause to a numeric value by computing the number of bindings for which the
logical expression can match the state. ZENITH reconstructed most of the well-accepted features
for Othello, and it also constructed a useful original feature humanly dubbed frontier-directions.

Levinson and Snyder’s (1991) MoRPH system learned an evaluation function for the game of
chess. The set of features is represented as a set of patterns, each with an associated weight. Each
pattern is an abstraction of a portion of a state, and is represented in a high-level hand-engineered
pattern language based on attacking and guarding relationships among the chess pieces in the
pattern. The system produces a pattern for the state before a move and the state after a move, using
a form of explanation-based learning to account for the differences.

5 Directionsfor Constructing Overlapping Features

Our primary goal is to develop methods that enable automatic construction of features for use
in an evaluation function that is used to drive move selection. As stated at the outset, the system
obtains feedback from its environment regarding the utility of the various outcomes. From this
feedback, the system adjusts the parameters of its functional form to minimize evaluation error.
How can features be constructed automatically in a manner that avoids the traps and weaknesses
already described?

We would like to be able to decompose the state space into subsets that share intrinsic prop-
erties. Each such subset (concept) needs to be circumscribed by a feature definition that is true for
elements within the subset and false for those outside. These subsets can overlap because a state
may possess multiple properties simultaneously. The set of features should be compact and dis-
criminating to the extent possible. The feature definitions should be found quickly with a minimum
of human effort. Each feature should evaluate efficiently (without search or expensive matching
costs) when applied to its inputs. Ideally, the features should be intelligible to humans, though this
IS not strictly necessary.

The next three sections discuss layered learning, compression afforded by individual com-
puting elements, systems teachable through supervised problem decomposition and training, and
feature compilation.

5.1 Layered Learning

It is well accepted that most concepts learned by a human are based on existing concepts
that were learned earlier. Humans are gifted in their ability to create new knowledge from old
knowledge, new experiences, or thinking. It is very efficient to layer knowledge in this way.
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Otherwise, a person would need to learn each new concept from first principles. This would be a
disastrous approach, with respect to efficiency of learning (survivability), storage efficiency, and
with respect to understanding how particular elements of knowledge relate to one another.

Remarkably, most approaches to evaluation function learning attempt to learn while using just
one (or sometimes two) layers of features (knowledge). This may be motivated by the fact that two
hidden layers of features (units), with ‘enough’ features per layer, are sufficient to represent any
evaluation function. However, sufficiency does not imply efficiency either in terms of learning time
or space consumption. It implies efficiency only in terms of layers. Consider a simple analogous
example from propositional logic. The sentence ((avb)A(cvd)) Vv ((eV f)A(gVh)) requires
seven (7) binary operators and three (3) layers to evaluate, whereas the logically equivalent sen-
tence ((aAc)V(and)Vv(bac)Vv(bAad)v(eng)V(eah)V (fAg)V(fAh))requires fifteen (15)
binary operators and two (2) layers to evaluate.

One possible motivation for minimizing the number of layers would be to facilitate the pa-
rameter adjustment scheme. However, layers of features model a problem decomposition, and
gradient descent does not seem to do well when using many layers. Back-propagation of error in a
many-layered network would model the process of learning all the layered knowledge at one time.
If this were easy to do, we would expect to see humans do it, but that is not the case. We do not
teach quantum mechanics to kindergarteners. Humans can build a new concept from the old when
the new concept is not too different from the old. This is why we have curricula and teachers and
parents, who help us learn more quickly by arranging new knowledge into a palatable order by
accounting for the various dependencies known to the teacher but not the student. One important
lesson that people learn is exactly the one just described; take on something new only if it requires
learning a small amount, and go back to fill in background if that something new would require
learning too much at once.

Consider a very simple example from the game of Othello. To play well, one must be able to
recognize each and every available legal move for either of the two players in any state, because it
is advantageous to minimize the number of legal moves for the opponent. A legal move exists at a
square of the 8x8 board if and only if a bracketed span exists in any one or more of the eight lines
emanating in one of the compass directions from the square. A bracketed span exists if and only if
the starting square is empty, followed by one or more of the opponent’s discs, followed by one of
the player’s discs. So, one must be able to recognize each and every available bracketed span for
either of the two players in any state. The set of possible bracketed spans forms one feature layer,
the set of legal move squares forms a second feature layer, and the number of moves available to
each player forms a third feature layer.

One might attempt to capture this knowledge in fewer layers, but to what avail? Programs
that use back-propagation of error to learn just a win/loss or disc-differential evaluation function
do not find this feature decomposition. Some programs find features that are somewhat correlated
with mobility, but they do not find features for the legal moves and the bracketed spans. Programs
should not be expected to do well at learning many layers of features from scratch. People are poor
at this as well. The rules of Othello explain bracketed span in order to explain legal move. One
feature is used to define another because it is efficient to do so.

Present-day practice (Tesauro, 1992), dating back several decades (Samuel, 1963), is to en-
gineer a set of input variables that enables a one or two layer learning algorithm to learn a good
evaluation function. This is quite reasonable, given the limited capabilities of our parameter ad-
justment learning algorithms. It amounts to hand-coding the layers of features that need to have



Feature Construction for Game Playing 8

Table 1. LTU for Spans in Same Direction
So S1 So S3 S4 Sg
empty 0O -8 -4 -2 -1 0
black -8 -8 4 2 1 1
whitt -8 0 0 0 0 O

been learned before being ready to learn the task set up by the program designer. We need to move
beyond these ‘last-layer’ learning approaches. Instead of hand-coding the required prior features
as input variables, we need to learn these too, to the extent possible. Instead of setting up a one-
shot learning program, we need to set up an agent that can learn an assortment of related concepts
(features) over an extended period.

We suspect that formulating an algorithm to construct a sufficient set of features automatically
has been elusive for so many decades for two fundamental reasons. First, aiming for one or at most
two feature layers is counterproductive. Second, one cannot expect a program to infer all the
required knowledge that would be represented in the various layers from just the outcomes for the
task of interest to the program designer. It is simply unrealistic to expect programs to learn all that
is needed from scratch.

In the same vein, the learning task of learning to play a game is often formulated in an im-
poverished manner from the outset. For example, the entire notion of move availability is hidden
in the game mechanics, and is therefore only implicit in the the play. This is quite different from
human play; if a human makes an illegal move, the opponent or referee identifies it as such. How
can we expect a learning program to uncover facts related to available legal moves if it is only
ever presented with a list of available moves? One might be able to add some appropriate infer-
ence rules, but these kinds of fixes merely change the built-in mechanics of the game. It would
be better to treat the concept of move legality as a subconcept for the program to learn. Indeed,
as discussed above, the rules of the game state this concept explicitly, suggesting that it must be
mastered independently of tactics and strategy for the game itself.

5.2 Compression

An important question is how to represent a feature. Some computing elements are better than
others for a given set of inputs that need to be covered (grouped) by a feature definition. Consider
again the problem of representing all the possible bracketed spans that emanate from a particular
square of an Othello board. It happens that it is possible to represent all the bracketed spans that
emanate in the same direction with just one linear threshold unit (Itu). Yet, it is impossible to
represent with only one Itu even two spans that emanate in different directions.

To understand this apparent curiosity, consider a ltu as depicted numerically in Table 1. In
this example, the threshold is assumed to be 0, so any sum of weights above 0 indicates presence
of a span, and any sum of 0 or less indicates absence of a span. In the table, square sq is the square
from which the bracketed span may emanate. If square sg (see column) is empty (see row), then
the contributing weight for the linear combination is 0 (see cell entry), meaning that a bracketed
span is still possible, to be determined by the rest of the pattern. Notice that if square s contains
either a black disc or a white disc, then the contribution is —8, indicating that bracketed span is
impossible. Square s; must be white for black to have a span, so one sees a weight of 0 for white,
and weights of —8 for empty or black. If square so contains a black disc, then a span is present,
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and the weight of 4 causes the sum to be positive regardless of the remaining values. If square s»
is empty, then a span must be absent, and if the square holds a white disc, a span is still possible.
If one considers the various combinations, one sees that the sum is positive for just those patterns
in which a span is present.

For spans in one direction, only one span can exist at a time, whereas for spans in differing
directions, one can exist independently of another. A negative sum that would indicate lack of a
span in one direction could unfortunately indicate lack of a span in any direction.

Given the large set of possible spans, it is noteworthy that they cluster into eight groups.
Using one Itu for each direction, one needs eight ltus for those groups, and a ninth to represent
a disjunction of the eight. This hints that a good teacher would offer this decomposition to the
learner. Of course, a learner should not rely solely on the teacher, and should attempt to cluster
inputs when possible. However, a good teacher facilitates learning, and we need to know how to
integrate supervised and unsupervised compression of useful sets of inputs into feature definitions.

Unlike a linear threshold unit, a sigmoid threshold unit cannot necessarily represent all the
spans emanating from a square in a single direction. One would need to tune the shape of the sig-
moid explicitly. It is well known that fitting data points with a threshold-shaped function (sigmoid)
can fail to find a separating plan that might exist (Duda & Hart, 1973; Freeman & Skapura, 1991).
Using a poorly suited computing element for a feature definition can complicate the structure of
the feature network, and slow learning.

5.3 Teachable Systems

We need a methodology for constructing systems that can learn a multitude of layered features
individually and collectively. The notion of training a single output unit or output layer needs to
give way to the idea that one can train features through means not limited to back-propagation of
error. One needs to be able to train any element (feature) at any time. Returning to the Othello
example, expert play depends on move presence, which depends on bracketed-span presence. The
system needs to be able to accept supervised training of the various bracketed spans, or the various
move presences at any time. Such capabilities can complement, rather than displace, methods that
have been developed for last-layer learning.

The notion of layered learning may suggest that the layers be learned one at a time. This need
not be the case as some layered knowledge may become advanced while other knowledge remains
relatively undeveloped. Furthermore, inputs to a feature can come from any existing feature, so the
layers may not be so tidy. Finally, one can always define new state variables later, and build new
features at various levels above, long after development of other features. We need to know how
layers of features can be constructed and modified incrementally.

The decision-making program (agent) should be able to interact with a human expert teacher,
who will invent features that correspond to useful decompositions or views of the task domain.
The evaluation function learner must automatically draw on the pool of features that it has learned
over time. Several issues arise. One set of these surrounds the data structures and mechanisms for
making it easy for the trainer to offer features and lessons at a comfortably high level. These same
structures need to be accessible to the evaluation function learner.

The second set of issues surrounds the problem of specifying generalized statements about
feature definitions. Stated another way, sometimes the trainer will want to provide training exam-
ples for a particular feature, and at other times the trainer will wish instead to provide a definition
of the feature. Such a definition will be at a high level, and will need to be converted as discussed
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Table 2. Application Interface Functions
doubl e
probe(char *unit_nane);

f mem
*create_fnmen(),
*| oad_fnem(char *file_nane);

i nt
save_fmenm(fmem*f, char *file_nane),
save_unit(unit *u, FILE *fp),
save_wire(wire *w, FILE *fp),
set _value(fnmem*f, char *unit_name, double v),
train_value(fmem*f, char *unit_nane, double v);

uni t
*| ookup_unit(fmem*f, char *nane);

voi d
create_tenpl ate(char *tenpl ate_nane,
char *input_unit_1, ..., char *input_unit_n),
create_unit(fmem=*f, function ft, char *nane),
create_ wire(fmem*f, char *input_unit_name, char *output_unit_nane,
doubl e wei ght),
eval (fmem *f),
eval _unit(fmem=*f, unit *u),
insert_unit(fmem*f, unit *u),
| oad_units(fmem*f, FILE *fp),
| oad_wires(fnmem*f, FILE *fp),
sort_units(fmem=*f),
updat e_l ayer _nuns(unit *u);
set _tenpl at e_val ues(char *tenpl at e_nane,
doubl e *value_1, ..., double *value_n),

below in Section 5.3.2.
5.3.1 A Persistent Network of Layered Features

10

We have begun work on a data type for training and maintaining a persistent layered feature
memory. This work is not yet well developed, but it is described here because it illustrates a path
toward longer term learning of many-layered features. Each input variable is named symbolically.
A new feature is created by giving it a symbolic name, by specifying the type of computing element
it uses, and by specifying the symbolic names of its inputs. By using symbolic names, the under-
lying structures need not be known to the expert teacher or any other external entity. We assume
throughout the discussion that a feature accepts Boolean input values and produces a Boolean out-
put value. It may be desirable to accept real-valued input variables, but our emphasis is on features

as intrinsic properties that are present or absent.
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Table 2 sketches an incomplete set of functions that would be used to build, manage, train, and
use a growing library of interconnected features. Because the inputs to a feature are state variables
or other features, the set of features and input variables form a network of features, maintained as
a data type. The data structures are loaded and saved as necessary so that the feature definitions
persist and develop over time through use with a variety of applications. For example, if in one
application a teacher has undertaken to educate the agent about the properties of a pair of six-sided
dice, then the features associated with and trained for dice become available to other applications.
This is one approach to effecting longer term learning and transfer.

To evaluate a feature, one specifies the values of its input variables on which it depends, and
the output value of the desired feature is then computed by applying the function of the feature’s
computing element to its inputs, recursively as necessary. To train a feature, one provides addi-
tionally a target output value that the feature should produce for the given inputs. The update rule
appropriate for the function of the computing element is applied.

Although different program can use the network in different ways, it will be common for
a particular program to have repeated interactions of a particular form. For example, a training
program may provide a sequence of training instances for refining the definition of a particular
feature. It could become expensive to make all the necessary symbolic associations (lookups)
for each training event. To circumvent this expense, one defines a template for such a series of
interactions. The associations are found just once at the beginning of the sequence. Then the
values of a training instance can be loaded into relevant elements of the network at once via the
template in which the pointers to the elements have been stored when the template was defined.

One needs to forbid or handle carefully recurrent structures. We shall avoid recurrent struc-
tures for the near term. The evaluation function learner can use any input variable or any feature as
an input. These values can be inputs to a single linear combination unit, or to a layer of sigmoid-
threshold units, as in the customary approaches to last-layer learning. For learning an evaluation
function, the connections from existing features to feature modeling the overall evaluation will be
created implicitly.

5.3.2 Feature Compilation

There is little point in training a computing element empirically when its definition is well
understood by a teacher and can be communicated. Instead of providing a stream of ( exam
pl e, val ue) pairs, one would like to be able to provide a definition in a high-level specification
language. To do this, one needs a procedure for compiling each such specification into the data
structures in which features are represented internally. A feature compiler has been constructed for
this purpose (Stracuzzi & Utgoff, 2000). Consider the game of tic-tac-toe. Why learn from data
to recognize the eight ways of forming three X marks in a line when one can specify such features
relatively easily?

The compiler accepts statements in a somewhat extended first-order logic, and converts these
to specific features modeled by simple computing elements. At present, a computing element
(feature) can be one of AND, OR, NOT, or LTU. The main compilation mechanism is based on the
presumption that quantified statements can be enumerated because the domain of each quantified
logic variable (not state variable) is finite and small. The logic specification in Figure 2 shows how
to specify the eight possible lines of three Xs that individually represent the presence of any of the
eight simplest winning configurations. This specification abstracts the essence of three in a row.

The compiler is told the domain of each quantified logic variable, and is told the quantified
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; Constants

Define: X =0;
Define: O=1;
Define E=2;

; Variables

Defi ne: p1=0..5;
Defi ne: p2=0..8;
Defi ne: p3=0..5;

; Constraints
Set: p2>pl;
Set: p3>p2;

; Feature
Feature: XWON( p1, p2, p3) <
OR(

; Horizontal lines
AND( p3=p2+1, p2=pl1+1, p1l mod 3=0, S(p1, X), S(p2, X), S(p3, X)),
; Vertica lines
AND( p3=p2+3, p2=p1+3, S(pl, X), S(p2, X), S(p3, X)),
; Diagonal lines
AND( p3=p2+4, p2=pl+4, S(pl, X), S(p2, X), S(p3, X)),
AND( p3=p2+2, p2=p1+2, p1=2, §(p1, X), S(p2, X), S(p3, X)));

; Feature
Feature: HASROW(X) + EXISTS(p1,p2,p3)[ XWON(pl,p2,p3) 1;

Figure 2. Specification X-has-three-in-a-row
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definitions for the lines. The compiler then enumerates the possibilities, and produces low-level
executable feature definitions that can evaluate quickly for a state. Figure 3 shows the features that
were created automatically by the feature compiler for the specification of three-in-a-row given in
Figure 2. The left-hand boxes of the figure indicate the input state variables, which are Boolean-
valued, corresponding to presence or absence of X, O or Empty in each square of the board. The
top boxes indicate feature definitions. In this figure, the label in each box was formed by copying
the text of the logic statement and removing all commas. A shaded box indicates that the feature’s
computing element is the OR function, and a non-shaded box indicates the AND function. A solid
dot indicates a positive connection from an input variable or feature to a feature. There are no NOT
or LTU features in the figure.

For tic-tac-toe, one can specify all the high level features that are needed to play perfectly
using a simple one-ply search. At the very least, a decision-making program must enumerate its
choices and select the best. For the specification that includes all the needed high level features
(not shown), the compiler creates 1,064 features in six layers in just seven seconds. These features
were verified against a database of all tic-tac-toe positions. Recall that Vu found 2,779 features
for a single layer of features. Compared to the 5,477 possible positions, the six layers of 1,064
achieve about a 5:1 compression, which is much better. This is strong evidence in favor of using
more than the minimum number of layers of features.

The particular approach we took for this application is a form of dynamic programming (Dijk-
stra, 1976), a form of goal regression (Waldinger, 1976), and a kind of static analysis of the domain
(Etzioni, 1993). Having the features for the immediate wins, one can then generate the features
for states in which an immediate can be produced in one move. This kind of feature bootstrapping
leads one to features that recognize positions that will be won under perfect play. For other appli-
cations, it may very well be that one cannot construct features that enable perfect one-step decision
making. Our goal is to provide a practical means of specifying useful features. For example, in
Chess, one could specify a feature that is true when an opponent’s piece is pinned by a bishop,
rook, or queen. This feature enables learning a more accurate evaluation function, but it is just one
aspect of position evaluation.

As discussed above, we have already begun to look at how to quantify logic variables over
atomic objects in the domain. More recently, we have extended the notion of object to composites
of objects. For example, consider Qubic, which is 4x4x4 tic-tac-toe. There are 76 lines of four
cells. It is highly inefficient to quantify four logic variables over the 64 cells, test the 635,376
combinations for those that form one of the 76 lines, and then test whether some condition holds
for that line. It is very much more efficient to define the 76 lines as 76 composite objects, and then
quantify over that finite domain of lines.

5.3.3 Decomposition, Compression, and Intrinsic Properties

Features that make sense to an expert teacher may not be the most efficient means of decom-
posing the state space for the purpose of learning an accurate evaluation function. For example, as
described above, all the Othello spans emanating from a particular square in a particular direction
can be covered by just one linear threshold unit. It is not necessary to use a separate element for
each span. Is this important, and if so, how is a teacher to know this? It is asking too much,
given our present knowledge, but it would be highly useful to understand which sets of patterns
are compressible into a single computing element such as a linear threshold unit. We need to study
this.
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To be able to experiment along these lines, we have developed an algorithm called PLM that
finds a piecewise linear fit of the examples for each class. It is based on an older algorithm by
Duda and Fossum (1966) that has been augmented to add new linear threshold units dynamically
as needed during learning (Utgoff, 1989). The algorithm has some attractive properties that we are
investigating separately in the context of classification algorithms.

The PLM algorithm was applied to a database of the 5,477 states of tic-tac-toe. Each state is
labeled either as a member of class “W’ (win), class ‘D’ (draw), or class ‘L’ (lose). The database
of labeled positions was produced in less than one second by a brute force searcher that assumed
perfect play at all times. All states use the negamax representation, which means that X represents
the player that has just moved. If in fact O has just moved, then in the state representation, all
O will have been changed to X and all X will have been changed to O. This removes the need to
record which player is on move.

After approximately 18 cpu hours on a DEC Alpha, PLM produced a perfect three-class
piecewise linear fit of all the data. There were 46 ltus for class “W’, 56 ltus for class ‘D’, and 36
Itus for class ‘L’, for a total of 138 Itus (features). There is no guarantee that this is a minimum
number of Itus. Nevertheless, this is a significant improvement over the 1,064 features that were
produced using the feature compiler described above. Compared to the 5,477 positions, this is
almost a 40:1 compression. This does not mean that compiling is a bad idea, but only that a
better target set of computing elements would have been linear threshold units. The compiler ran
in seven seconds, but PLM ran in eighteen hours. Compiling directly into LTU features would
produce much stronger compression than Boolean features, at low cost. Consider an example from
tic-tac-toe. One useful feature is whether a particular square is empty, and whether the remaining
two squares in a particular line hold 1 X and 1 empty. A single linear threshold element can
represent both cases, whereas one would need to recognize each case individually and OR them in
Boolean logic.

Inspection of the 46 Itus for class “W’, and the set of examples covered by each, is informative.
Many instances are covered by more than one Itu. An instance is a member of class ‘W’ if any of
the Itus for class “W’ evaluates to a value above a small margin above 0. Of the 46 Itus, one finds
an Itu for each of the eight lines of three in a row. Each cluster of instances covered by an ltu has
certain commonalities. Given that an Itu represents a boundary in the Boolean hypercube, clustered
instances represent hamming neighborhoods. We need to know much more about which sets of
instances can be covered by a single Itu, and how to use a set of Itus to cover a set of instances in
a piecewise manner. We need to identify whether there are any implications for how a teacher of
features should decompose the space.

PLM finds a single layer of ltus that circumscribe a convex region. This may not be a good
target either. By building useful layers of features, non-convex regions become describable. It is
important to think about decompositions comprehensively with respect to layers of useful features.

6 Discussion

It appears important to investigate methods that enable construction of many layers of fea-
tures. This follows from the observation that useful features are defined in terms of others, and
from our desire to move beyond last-layer learning systems. Humans are not able to learn all
features at once. Learning provides small incremental advances over what one already knows.

If learning of many-layered features is to occur over an extended period of time, with a variety
of interactions and agents, then it will be important to develop a facilitating data type. We need an
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interface whereby a human or separate program can define features by specifying a symbolic name
for it, its computing element, and the symbolic names of its inputs. These features can be trained
independently at any time, leaving alone other connected features in the network of features. All
features can serve as inputs to the last element or layer of elements that compute the evaluation of
the state.

In addition to facilitating supervised construction and training of features for a many-layered
network, it will useful to study feature compilation methods that convert high level feature spec-
ifications into low level features or feature sets represented in the underlying data structures. Al-
though we have a preliminary version, there is much exploration yet to be done regarding more
powerful specification languages and more succinct target representations. Several issues regard-
ing task decomposition and information compression need to be addressed.

One should consider whether proposing to build a long-lived network of feature definitions is
just pushing the hand-coding of features out of one programming process (application program)
and into another (constructing and training features). On the surface this may be so, but there is
much more to it than that. Many layers of features offer significant representational advantages.
Furthermore, an agent should be able to benefit from an organized curriculum of instruction, inter-
leaved with learning from experience.

It is quite common to employ artificial neural networks for problems in which a last layer (or
two) of features can be learned adequately. Artificial neural networks can be highly useful in this
role, and they perform magnificently when the inputs have been properly engineered. However,
they can become trapped at local minima, and they can fail to find features that would provide
improved evaluation accuracy. We need to have a broader scope when addressing the problem of
constructing useful features for evaluation function learning. Several ideas have been proposed
here to this end. It will be fruitful to consider many layers of features, supervised teaching of
features, feature compilation, problem decomposition, and unsupervised reorganization and com-
pression of existing features.
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