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Abstract

Noncooperative game theory provides a norma-
tive framework for analyzing strategic interactions.
However, for the toolbox to be operational, the so-
lutions it defines will have to beomputed In this
paper, we provide a single reduction that 1) demon-
strates\P-hardness of determining whether Nash
equilibria with certain natural properties exist, and
2) demonstrates th#P-hardness of counting Nash
equilibria (or connected sets of Nash equilibria).
We also show that 3) determining whether a pure-
strategy Bayes-Nash equilibrium exists AP-
hard, and that 4) determining whether a pure-
strategy Nash equilibrium exists in a stochastic
(Markov) game isPSP.ACE-hard even if the game

is invisible (this remaing/"P-hard if the game is fi-
nite). All of our hardness results hold even if there
are only two players and the game is symmetric.

Introduction

like. Algorithms for analyzing this more general class of
games strategically are a necessary component of sophisti-
cated agents that are to play such games. Additionally, they
are needed bynechanism designemho have (some) con-
trol over the rules of the game and would like the outcome of
the game to have certain properties, such as maximum social
welfare.

Noncooperative game theory provides languages for rep-
resenting large classes of strategic settings, as well as so-
phisticated notions of what it means to "solve” such games.
The best known solution concept is that iash equilib-
rium [16], where the players’ strategies are such that no in-
dividual player can derive any benefit from deviating from its
strategy. The question of how complex it is to construct such
an equilibrium has been dubbed “a most fundamental com-
putational problem whose complexity is wide open” and “to-
gether with factoring, [...] the most important concrete open
question on the boundary &f today”[19].

While this question remains open, important concrete ad-
vances have been made in determining the complexity of re-
lated questions. For example, 2-person zero-sum games can
be solved using linear programmifitZ in polynomial time.

Noncooperative game theory provides a normative frameas another example, determining the existence of a joint
work for analyzing strategic interactions of agents. Howevergirategy where each player gets expected payoff at least
for the toolbox to be operational, the solutions it defines willig Arp-complete in a concisely representable extensive form
have to becomputed22]. There has been growing interest game where both players receive the same utily! As

in the computational complexity of natural questions in game et another example, in 2-player general-sum normal form
theory. Starting at least as early as the 1970s, complexity thgrames, determining the existence of Nash equiliaita cer-
orists have focused on the complexity of playing particularigj, propertiesis A’ P-hard[4]. Finally, the complexity of
highly structured games (usually board games, such as cheggst-responding, of guaranteeing payoffs, and of finding an

or Go[10], but also games such as Geography or QEM).  equilibrium in repeated and sequential games has been stud-
These games tend to be alternating-move zero-sum gamesy in[1,7, 11, 18, 2k

with enormous state spaces, which can nevertheless be con-j 1. paper we provide new complexity results on ques-
cisely represented due to the simple rules govering the trang o olated to Nash equilibria. In Section 2 we provide
sition between states. As a result, effort on finding result single reduction which significantly improves on many of
for general classes of games has often focused on compI%

| i which h structured b Y5ilboa and Zemel's results on determining the existence of
anguages in which such structured games can be CONCISe 5, equilibria with certain properties. In Section 3, we

repll?reslente(iid tratedi i I ¢ | use the same reduction to show that counting the number
eal-world strategic settings are generally not néarly axt nash equilibria (or connected sets of Nash equilibria) is

structured, nor do they generally possess the other propelz p_arq |n Section 4 we show that determining whether a

ties (most notably, zero-sumness) of board games and t

*The material in this paper is based upon work supported by the 1This game can be converted to a normal form game as well, but
National Science Foundation under CAREER Award IRI-9703122,it will grow exponentially in size, and the hardness result does not
Grant 11S-9800994, ITR 11S-0081246, and ITR 11S-0121678. go through.



pure-strategy Bayes-Nash equilibrium existd/i®-hard. Fi-  Definition 4 Let¢ be a Boolean formula in conjunctive nor-

nally, in Section 5 we show that determining whether a puremal form. LetV be its set of variables (withi’| = n), L

strategy Nash equilibrium exists in a stochastic (Markov)the set of corresponding literals (a positive and a negative

game iSPSP.ACE-hard even if the game is invisible (this one for each variablé€) and C its set of clauses. The func-

remains\P-hard if the game is finite). All of our hardness tion v : L — V gives the variable corresponding to a lit-

results hold even if there are only two players and the gameral, e.g. v(z1) = v(—z1) = z1. We defineG(¢) to be

is symmetric. the following symmetric 2-player game in normal form. Let
Y =%, =%, =LUVUCU{f}. Letthe utility functions

2 Equilibria with certain properties in normal e w (I 17) = un(P 1Y) = 1forall 112 € Lwith ! %

form games P2

When one analyzes the strategic structure of a game, espe-® u1(l, —1) = ua(—1,1) = —2foralll € L;

cially from the viewpoint of a mechanism designer who tries e w;(l,2) = us(x,l) = —2foralll € L,z € ¥ — L;

to construct good rules for a game, finding a single equilib- e w,(v,1) = uy(l,v) = 2 foral v € V, 1 € L with
rium is far from satisfactory. More desirable equilibria may v(l) # v;

exist: in this case the game becomes more attractive, espe-o 4, (v,1) = uy(l,v) =2 —nforall v € V, 1 € L with
cially if one can coax the players into playing a desirable o(l) = v;

equilibrium. Also, less desirable equilibria may exist: in this | wi(v,7) = us(z,0) = —2forallve V,z € © — L;
case the game becomes less attractive. Before we can make ’l — us(l ’) ~oforallceC 1 ’L with ¢ "
a definite judgment about the quality of the game, we would ® *1( ) = uz(l,c) = ceL,ie ©
like to know the answers to questions such as: What is the ® “16(06’_1) = uz(l,c) =2 -nforallce C 1 € Lwith

game’s most desirable equilibrium? Is there a unique equilib-

rium? If not, how many equilibria are there? Algorithms that  ® u1(c, ) = uz(z,c) = —2forallc € C,z € ¥ - L;

tackle these questions would be useful both to players and to ® u1(f, f) = u2(f, f) = 0;

the mechanism designer. o ui(f,x) =us(z, f) =1forallz € ¥ — {f}.
Furthermore, algorithms that answer certain existencq.heorem 11 1y, 1

questions may pave the way to designing algorithms that cong o yerois 2 Nash equilibrium 6#(¢) where both players

struct a Nash equilibrium. For example, if we had an algo- lay ; with probability -, with expected utility 1 for each

rithm that told us whether there exists any equilibrium Whereglayelr The only othernNash equilibrium is the one where

a certain player plays a certain strategy, this could be useful i ' : e

eliminating possibilities in the search for a Nash equilibrium. oth players play, and receive expected utility 0 each.
However, all the existence questions that we have investiProof: We first demonstrate that these combinations of

gated turn out to b&/"P-hard. These are not the first results mixed strategies indeed do constitute Nash equilibria. If

of this nature; most notably, Gilboa and Zemel provide somg(, i,, ..., 1,) (wherev(l;) = z;) satisfiesp and the other

N'P-hardness results in the same sgi4it We provide asin-  player playd; with probability%, playing one of thesg as

gle reduction which in demonstrates (sometimes stronger vevell gives utility 1. On the other hand, playing the negation

sions of) most of their hardness results, and interesting newf one of thesd; gives utility 2(—2) + ~1(1) < 1. Play-

results. Additionally, as we show in Section 3, the reductionng some variables gives utility £ (2 — n) + 2=1(2) = 1

showsy#P-hardness of counting the number of equilibria.  (since one of the; that the other player sometimes plays
We first need some standard definitions from game theonhasy(i,) = v). Playing some clausegives utility at most

L(2 = n) + 2=1(2) = 1 (since one of thé; that the other

player sometimes plays occurs in clagssince the,; satisfy

¢). Finally, playing f gives utility 1. It follows that playing

any one of thd, that the other player sometimes plays is an

Definition 2 A mixed strategyr; for playeri is a probability ~ optimal response, and hence that both players playing each

distribution overY;. A special case of a mixed strategy is of thesel; with probability 1 is a Nash equilibrium. Clearly,

a pure strategywhere all of the probability mass is on one both players playing is also a Nash equilibrium since play-

element of;. ing anything else when the other plaggives utility —2.

L _ Now we demonstrate that there are no other Nash equilib-
Definition 3 (Nash[1€]) Given a normal form game, a yia |f the other player always play§ the unique best re-
Nash ethbnum (NE)is vector of mixed strategies, one sponse is to also plag since playing anything else will give
for each agenti, such that no agent has an incentive ity 2. Otherwise, given a mixed strategy for the other
to deviate from its mixed strategy given that the othersyjayer, consider a player’s expected utility given that the other
do not dewate/. That is, for any and any alternative pjaver does not play. (That is, the probability distribution
mixed strategy;, we haveF[u;(s1, sa,---,5i,---,514)] 2 over the other player's strategies is proportional to the proba-
Elui(s1, s2,...,5},...,54))], where eacls; is drawn from pjlity distribution constituted by that player's mixed strategy,
o;, ands; fromoy. —_—

., 1n) (whereu(l;) = ;) satisfiesp,

Definition 1 In a normal form gamgwe are given a set of
agentsA, and for each agent, a strategy sekt; and a utility
functionu; : 1 X X9 X ... X E‘A| — R.

) 2Thus, if z1 is a variablez; and—z; are literals. We make a
Now we are ready to present our reduction. distinction between the variablg and the literal; .



exceptf occurs with probability 0). If this expected utility is hard for any such definition. Additionally, the first kind of

less than 1, the player is strictly better off playifigwhich  equilibrium is, in various senses, an optimal outcome for the

gives utility 1 when the other player does not pladyand game, even if the players were to cooperate, so even finding

also performs better than the original strategy when the othesut whether such an optimal equilibrium exists is hard. The

player does play). So this cannot occur in equilibrium. following corollaries illustrate these points (each corollary is
There are no Nash equilibria where one player alwaysmmediate from Theorem 1).

playsf but the other does not, so suppose both playersplayaﬁ':

with probability less thz;n one. Con_sider the expected soci ard to determine whether there exists a NE with expected
welfare (Euy + u]), given that neither player plays It (g0 0qa04) social welfare [ S w;]) at leastk, even

is easily verified that there is no outcome with social welfare 1<i<)A| ! ’

greater than 2. Also, any outcome in which one player playgyhen; is the maximum social welfare that could be obtained
an element ol or C' has social welfare strictly below 2. It i, the game.

follows that if either player ever plays an elementobr C, ] ] o

the expected social welfare given that neither player pfays Corollary 2 Even in symmetric 2-player games, itASp-

is strictly below 2. By linearity of expectation it follows that hard to determine whether there exists a NE where all players
the expected utility of at least one player is strictly below 1have expected utility at leadt, even wherk is the largest
given that neither player plays and by the above reasoning, number such that there exists a distribution over outcomes of
this player would be strictly better off playinginstead of its ~ the game such that all players have expected utility at least

randomization over strategies other tharit follows thatno  corollary 3 Even in symmetric 2-player games, itA§P-
element ofi” or C'is ever played in a Nash equilibrium. _hard to determine whether there exist®areto-optimaNE.

_ So, we can assume both players only put positive probabil¢s distribution over outcomes is Pareto-optimal if there is no
ity on strategies il U{ f }. Then, if the other player puts pos- other distribution over outcomes such that every player has

itive probability on f, playing f is a strictly better response at least equal expected utility, and at least one player has
than any element ok (since both give utility 1 if the other  strictly greater expected utility).

player plays an element df, but f does better if the other ) i o

player playsf). It follows that the only equilibrium wherg ~ Corollary 4 Even in symmetric 2-player games, itASP-

is ever played is the one where both players always play hard to determine whether there exists a NE where player 1
Now we can assume that both players only put positivd'@S expected utility at least

probability on elements of. Suppose that for sonmec L, Some additional interesting corollaries are:
the probability that a given player plays eitiesr —[ is less

1 -

Fhan n '.rhen.the expected utilty for the O,tlrl?r player of play hard to determine whether there is more than one Nash equi-

ing v(l) is strictly greater thar (2 — n) + 2=1(2) = 1, and librium

hence this cannot be a Nash equilibrium. So we can assume '

that for anyl € L, the probability that a given player plays Corollary 6 Even in symmetric 2-player games, itASP-

eitherl or —/ is precisely}L. hard to determine whether there is an equilibrium where
If there is an element of. such that player 1 puts posi- player 1 sometimes playse ;.

tive probability on it a_n'd player 2 on its negation, both play- orollarv 7 Even in symmetric 2-plaver qames. it A&P-
ers have expected utility less than 1 and would be better Of&u:ard to ydetermine Whyether therepis yan gequilib,riurjrzé 7\there
switching tof. So, in a Nash equilibrium, if player 1 plays player 1 never plays € 3;.
with some probability, player 2 must pldywith probability
1, and thus player 1 must pldywith probability -. Thus Al of these results indicate that it is hard to obtain sum-
we can assume that for each variable, exactly one of its comary information about a game’s Nash equilibria. (Corol-
responding literals is played with probabilifyby both play- lary 5 and weakeérversions of Corollaries 2, 6 and 7 were
ers. It follows that in any Nash equilibrium (besides the onfirst proven by Gilboa and Zem#§t].)
where both players play), literals that are sometimes played
indeed correspond to an assignment to the variables. 3 Counting the number of equilibria in

AII that'is left to show is that if this assignmgr_u does not normal form games
satisfy ¢, it does not correspond to a Nash equilibrium. Let )
¢ € C be a clause that is not satisfied by the assignment, thdzxistence questions do not tell the whole story. In general, we
is, none of its literals are ever played. Then playingould ~ are interested in characterizing all the equilibria of a game.

give utility 2, and both players would be better off playing One rather weak such characterization is the number of equi-
this. = libria®. We can use Theorem 1 to show that even determining

this number in a given normal form game is hard.

Corollary 8 Evenin symmetric 2-player games, counting the
number of Nash equilibria ig-P-hard.

orollary 1 Even in symmetric 2-player games, itASP-

Corollary 5 Even in symmetric 2-player games, itASP-

Hence, there exists a Nash equilibriunGitg) where each
player gets utility 1 if and only if is satisfiable; otherwise,
the only equilibrium is the one where both players pfagnd
each of them gets 0. Since any sensible definition of welfare QOur results prove hardness in a slightly more restricted setting.
optimization would prefer the first kind of equilibrium, it fol- 4The number of equilibria in normal form games has been stud-
lows that determining whether a “good” equilibrium exists is ied both in the worst cadd 5] and in the average caf®4].



Proof: The number of Nash equilibria in our gari&¢) is > Ey_ 10, [Eui(0i,51,0,,52,0,, - .,3;195’, .. ~,S|A|,«9‘A‘)H
the number of satlsfylng assignments to the va_lrlable$,of where eachs, g, is drawn fromo, o, ands’ , fromo’, .

plus one. Counting the number of satisfying assignments to a i Vi 4,0 3,0
CNF formula is#P-hard[24]. = We can now define the computational problem.

It is easy to construct games where there is a continuum deefinition 7 (PURE-STRATEGY-BNE) We are given a
Nash equilibria. In such games, it is more meaningful to asiayesian game. We are asked whether there exists a BNE

how many distinct continuums of equilibria there are. MoreWhere all the strategies; o, are pure.

formally, one can ask how many maximal connected sets of To show out\P-hardness result, we will reduce from the
equilibria a game has (a maximal connected set is a connectET-COVER problem.

set which is not a proper subset of a connected set). Definition 8 (SET-COVER) We are given a  set

Corollary 9 Evenin symmetric 2-player games, countingthes  — (s, ... s,}, subsetsS;,S,,...,S, of S with
number of maximal connected sets of Nash equilibrig# Ui<iem Si = S, and an integerc. We are asked whether
hard. there existS., , S, .- ., Se, such thalJ; ., Se, = 5.

Proof: Every Nash equilibrium irG(¢) constitutes a maxi- Theorem 2 PURE-STRATEGY-BNE i&/P-hard. even in
mal connected set by itself, so the number of maximal Con'séymmetric 2-player games whepds uniform. '

nected sets is the number of satisfying assignments to th
variables ofp, plusone. = Proof: We reduce an arbitrary SET-COVER instance to

) , the following PURE-STRATEGY-BNE instance. Let there
The most interesting:P-hardness results are the ones wherg,e two players, withd = ©, = ©, = {0',...,0%).

the corresponding existence and search questions are €a8Y\is uniform.  Furthermore,X = %, = Y, =
such as counting the number of perfect bipartite matchings{S1 A P Sn}_' The utility functions we

In the case of Nash equilibria, the existence question is trivialanoose in fact do not depend on the types, so we omit the
it has been analytically shown (by Kakutani's fixed point the-tyne argument in their definitions. They are as follows:

orem) that a Nash equilibrium always exi§i$]. The com- S S — un(Ss S) — 1forall S: ands.-

plexity of the search question remains open. * ui(5;,85) = u2(S;, 8;) = 1forall S; andsj;

° U1(5i7 Sj) = ’LLQ(Sj, S,L) =1 for all S; ande ¢ S
4 Pure-strategy Bayes-Nash equilibria o u1(Si, 55) = u2(s;,5i) = 2 forfall S” andsé € S
Equilibriain pure strategies are particularly desirable because ° ul(si" ‘ZZ'.) :uQ(‘zf SZ) __—?)?}kroqlek\g Sinadn 48]"54.
they avoid the uncomfortable requirement that players ran- * us(sy, Si) = u2(S;, ;) = 3forall 5; ands; ¢ 5i;

[ Ul(Sj, Sz) = HQ(SZ', 8]') = —3k forall S; ande € S;.

domize over strategies among which they are indiffefaht
In normal form games with small numbers of players, it is We now show the two instances are equivalent. First sup-
easy to determine the existence of pure-strategy equilibrigpose there exist., , Sc,, ..., S, suchthatJ,,., S, = S.

one can simply check, for each combination of pure strateSuppose both players play as follows: when their typ is
gies, whether it constitutes a Nash equilibrium. Howeverthey playsS,,. We claim that this is a BNE. For suppose the
this is not feasible ilBayesiargames, where the players have other player employs this strategy. Then, because fosany
private information about their own preferences (representethere is at least ong., such thats; € S.,, we have that the

by typeg. Here, players may condition their actions on their expected utility of playing; is at mostl (—3k) + 213 < 0.
types, so the strategy space of each player is exponential ipfollows that playing any of thes; (which gives utility 1) is

the number of types. . optimal. So there is a pure-strategy BNE.

In this section, we show that the question of whether a " on the other hand, suppose that there is a pure-strategy
pure-strategy Bayes-Nash equilibrium exists is in f8CP-  BNE. We first observe that in no pure-strategy BNE, both
hard even in symmetric two-player games. First, we need thgjayers play some element sffor some type: for if the other
standard definition of a Bayesian game and Bayes-Nash equiiayer sometimes plays somg, the utility of playing some
librium from game theory. s; is at mostt (—3k) + 513 < 0, whereas playing soms;
Definition 5 In aBayesian gameve are given a set of agents instead guarantees a utility of at least 1. So there is at least
A; for each agenti, a set of type®,; a commonly known one player who never plays any elementSofNow suppose
prior distribution ¢ over©; x O, x ... x O)4|; for each  the other player sometimes plays someWe know there is
agenti, a set of strategie¥;; and for each agent, a utility =~ someS; such thats; € S;. If the former player plays this
functionu; : ©; X X1 X Xp x ... x X4 — R S;, this will give it a utility of at leastt2 + 211 = 1 4 1.
Definition 6 (Harsanyi [5]) Given a Bayesian game, a Since it must do at least this well in the equilibrium, and it

Bayes-Nash equilibrium (BNE§ a vector of mixed strate- N€Ver plays elements ¢, it must sometimes receive utility
gies, one for each paif, §; € ©;, such that no agent has an 2. It follows that there exisb, ands, € S, such that the

incentive to deviate, for any of its types, given that the other§ormer player sometimes plays, and the latter sometimes

do not deviate. That s, for anyé; € ©;, and any alternative PlaySsy. But then, playings, gives the latter player a utility
mixed strategy’, , , we have of at most%(fi%k) + %3 < 0, and it would be better off

playing someS; instead. (Contradiction.) It follows that in
Eo_10,[E[wi(0,81,0,: 52,005 8,05+ - -+ 5|a],6,4,)]] no pure-strategy BNE, any element®fs ever played.



Now, in our given pure-strategy equilibrium, consider the off to player: in states where the players play actions
set of all theS; that are played by player 1 for some type. ai,...,aAp
Clearly there can be at mostsuch sets. We claim they cover e A discount factors such that the total utility of agent

S. For if they do not cover some elemesyt, the expected R i b

utility of playing s; for player 2 is 3 (because player 1 never S ;::05 ui(s®,a1,..., afy), wheres® is the state
plays any element of). But this means that player 2 (who of the game at stagé and the players play actions
never plays any element éfeither) is not playing optimally. LI af«AI in stagek.

(Contradiction.) Hence, there exists a set covemn
In general, a player need not always be aware of the cur-
If one allows for general mixed strategies, a Bayes-Nashent state of the game, the actions the others played in pre-
equilibrium always exist§3]. However, the question of how vious stages, or the payoffs that the player has accumulated.
efficiently one can be constructed remains open. In the extreme case, players never find out any of these and
are hence playing blindly. We call such a Markov gaime
5 Pure-strategy Nash equilibria in stochastic ~ visible It is relatively easy to specify a pure strategy in an
invisible Markov game, because there is nothing to condition
(Markov) games ALSE < 15 T1OHT
on. Hence, such a strategy is “simply” an infinite sequence of
We now shift our attention from single-shot games to gamesictions (for playei, a sequencéa”}, where it plays action
with multiple stages. In each stage, the players get to act angk in stagek, regardless).In spite of this apparent simplicity

7

obtain payoffs. There has already been some research into tgethe game, we show that determining whether pure-strategy
complexity of playing repeated and sequential games. For exquilibria exist is extremely hard.

ample, determining whether a particular automaton is a best . .
response i/ P-completd 1]: it is AP-complete to compute  D€finition 10 (PURE-STRATEGY-INVISIBLE-

a best-response automaton when the automata under consiJARKOV-NE) We are given an invisible Markov game. We
eration are boundeflLg]; the question of whether a given &€ asked whether there exists a Nash equilibrium where all

player with imperfect recall can guarantee itself a given pay{he strategies are pure.
off using pure strategies j§"P-complete[7]; and in general,  We show that this problem iBSP.ACE-hard, by reducing
best-responding to an arbitrary strategy can even be noncorfrom PERIODIC-SAT, which isPSP.ACE-complete[17].

putable[25]. In this section, we present, to our knowledge, . .. .. .
the firstPSP.ACE-hardness result on the existence of a pure—D(aflnltlon 11 (PERIODIC-SAT) We are given a CNF for-

strategy equilibrium. mulaqb(o)k?ver the \;arlablles{:c? . x%}h U {ﬁ} = xy}. Let

A multi-stage game is typically represented agachastic  ¢(k) be the sar;ei) Ormvl\J/ a, exce;?(t tdatha r;[ € iupersc_rlpts
(Markov) gamewhere there is an underlying set of states, andf ¢ mlcrement(_a W. ehare as g whether there exists
the game shifts between these states from stage to[St2f& a Boolean ass_,lgnm_eqt to the variablgly_o,, . {27 --- Zn}
21]. At every stage, each player’s payoff depends not only orfUch thatp(k) is satisfied for everf = 0,1, ... .
the players’ actions, but also on the state. Furthermore, thgheorem 3 PURE-STRATEGY-INVISIBLE-MARKOV-NE is
probability of transitioning to a given state is determined by PSP ACE-hard, even when the game is symmetric, 2-player,
the current state and the players’ current actions. Hardnesghd the transition process is deterministic.
results for such games cannot be obtained simply by formu- ) _
lating a known hard game such as generalized[G3) or ~ Proof: We rgduce an arbltrary PERIODIC-SAT instance
QSAT [23] as a Markov game, because such a formulatiorio the following symmetric 2-player PURE-STRATEGY-
would have to specify an exponential number of states. EveNVISIBLE-MARKOV-NE instance. The state spaceds=
if the number of states is polynomial, one might suspect hard{si}1<i<n U {ti }1<i<ancec U {t7 J1<i<ancec U {r},
ness because the strategy spaces are extremely rich. Howewshere C' is the set of clauses in(0). FurthermoreX =
in this section we sho®SP.ACE-hardness even in a variant X1 = X, = {¢t, f} U C. The transition probabilities are
where the strategy spaces are simple (in the sense that the, p(si, o', 2%, 8 1 (modny) = 1 for1 < i < n and all
players cannot condition their actions on events in the game). a2 e

Definition 9 A stochastic (Markov) gameonsists of
e A setof players;
¢ A set of state$, among which the game transits;
e For each player, a set of action&; that can be played

in any state;
e A transition probability functiorp : S x 37 x ... X
X4 X S — [0,1], wherep(sy, ay,... 7a‘A‘752) gives

the probability of the game being in statg in the next
stage given that the current state of the game,isnd
the players play actions, . . ., a4;

e For each playeri, a payoff functionu; : S x X; x
... 84 — R, whereu;(s,ay, ..., a)4]) gives the pay-

e p
e p(s1,¢,b,ty ) =1forallb e {t, f} andc € C;

s1,bt,b% s9) = 1 forall b, 0% € {¢t, f};

p(s1,ct,c?,r)=1forallct,c? € C;

p(t] at,a?t],, ) =1foralll <i<2n,j e {1,2},
ce C,andz!, 2% € 3;

p(thy, oot 2%, r) = 1forallj € {1,2}, ¢ € C, and
b 2? e

1
(
(
p(s1,b,¢,t3,) = 1forallb e {t, f} andc € C;
(
(

SWe do not need to worry about issues of credible threats and
subgame perfection in this setting, so we can simply use Nash equi-
librium as our solution concept3].



e p(r,zt, 2%, r) = 1forallz!,2? € %. t2_kymsic @nd settingr;* to b satisfiesc. The discount-

Some of the utilities obtained in a given stage are as follows$d is insignificant enough that this more than cancels out the
(we do not specify tilities irrelevant to our analysis): 1 earned in stagén + 1. Player 2 will get (at most) 0 in
o wi(si,at,22) = us(si, 2%, 2') = 0for 1 < i < n and the other stages up to the first stage in statm_d given that
11585 ) NG = we made the payoffs in the game in statsufficiently small

ol 2 .
allz ’“Ll 622' — — relative tod, player 2 will not earn enough in the remaining
o ui(s1,b0,0%) = uz(s1,0%b7) = 0 forall b,6° € gages to cancel out its losses so far. So there is no incentive
{t. [} to deviate. Thus, a pure-strategy NE exists.
e ui(s1,¢,0) = us(s1,b0,c) = 1forallb € {t, f} and On the other hand, suppose that no assignment satisfying
¢ € C, when setting variable! to b does not satisfy; the periodic SAT formula exists. Let us investigate whether a
o uy(s1,¢,b) = uz(s1,b,c) = —1forallb € {t, f} and  Nash equilibrium could exist. We know that in such a Nash
¢ € C, when setting variable! to b does satisfy:; equilibrium we never leave the;, so both players receive
o ui(sy,ct,c?) = us(sy,c?,ct) = —1forallct,c? € C; utility 0, and noc is ever played in a stage with state.

° U’l(tllanri@x’b) = uQ(tinHC,b’ x) = 0fork € {0,1}, Since playing ac in one of the other stages can have no
1<i<mn alce Candb e {t, f} such that setting deterrent value, we may suppose that only elemen{s, gf}

.l o B = us(t? ba) — —d for k e x¥: if player 1 playsb in stagekn + i, z¥ is set tob. Since
n+i,c’ % - n+i,cr -

no assignment satisfying the periodic SAT formula exists,

we know there is some clauseand somek such that no
variablez! amongz¥, ... ok 2% . zk+lis setto some

K n? ) n

{0,1},1 < i < m,allc € C andb € {¢, f} such that
setting variable:¥ to b does satisfy, and allz € 3;

1 / 2 /
¢ ul(tk"H»C’gfn’C) - uz(/t’m“v(«"c @) = 0fork €y gich that setting. ~* to b satisfiesc. But then, if player 2
{01}, 1<i<m,alle,d € C,and allx € 3. deviates to play this in stagekn + 1, it will receive payoff
Additionally, the game played in stateis some symmet- 1 in this stage, and payoff O in all the remaining stages up to
ric zero-sum game without a pure-strategy equilibrium (forthe first stage in state Furthermore, player 2 can guarantee
example, a generalization of rock-paper-scissors) with verjtself at least payoff O in each stage in stateas this state
small payoffs. Finally, the discount factords= (1)z+ (so ~ Corresponds to a zero-sum symmetric game. It follows that
thats2" > %). this deviation gives player 2 positive utility and is hence

We start our analysis with a few observations. First,benef'c'al' Thus, no pure-strategy NE existsa

there can be no pure-strategy equilibrium in which state A simpler version of the same argument shows a weaker
reached at some point, because (sin&ean absorbing state) form of hardness for the case where the game is restricted

game in state were played whenever stat@ccurred. (Oth-  jimited space):

erwise a player who is not best-responding in one of these _
stages could simply switch to a best response in this stagd ne€orem 4 PURE-STRATEGY-INVISIBLE-MARKOV-NE is
and because the game is invisible, the rest of the game woutly P-hard, even when the game is symmetric, 2-player, the
remain unaffected, so this would give higher utility.) But suchiransition process is deterministic, and the number of stages
an equilibrium does not exist. Second, if we ever reach one dft the game is finite.

thet! . states, we will inevitably reach stateat some point )

after this. It follows that all pure-strategy Nash equilibria 6 Conclusions and future research

never leave the; states. o o Noncooperative game theory provides a normative frame-
Now suppose an assignment satisfying the periodic SATyork for analyzing strategic interactions. However, for the
formula exists. Let both players play as follows: in stagetoolbox to be operational, the solutions it defines will have to
kn+i (with 1 < < n), b € {t, f} is played, wheré is  pe computed In this paper, we provided a single reduction
the value that the variablef is set to. Clearly, both players that 1) demonstrates/P-hardness of determining whether
receive utility O with these strategies. Does either player hav@ash equilibria with certain natural properties exist, and 2)
an incentive to deviate? The only deviation of any signifi- gemonstrates théP-hardness of counting Nash equilibria
cance is to play somee C when the current state is. S0, (or connected sets of Nash equilibria). We also showed that 3)
without loss of generality (because of the symmetry of theyjetermining whether a pure-strategy Bayes-Nash equilibrium
game), say player 2 deviates to playing C'in stagekn+1  exists isA/P-hard, and that 4) determining whether a pure-
(when the state is;). We know that in the satisfying assign- strategy Nash equilibrium exists in a stochastic (Markov)
ment, some variable} amongz¥, ... 2k, 2}, .. 2k tlis  game isPSP.ACE-hard even in invisible games (addP-
set to somé such that setting! " to b satisfies:. Ifitis ¥,  hard if the game is finite). All of our hardness results hold
which is set toh, then in stagén + 1 player 1 plays, and  even if there are only two players and the game is symmetric.
player 2 gets payoff-1 in this stage since we are in state  There are numerous open research questions in computing
s1 and settingr? to b satisfiesc. Otherwise, if it isz! with  solutions to noncooperative games. Some recent work has fo-
l =k+1ori# 1, which is set toh, then player 2 will get cused on novel knowledge representations which, in certain
payoff 1 in stagén + 1, but in stagén + i player 1 play9, settings, can drastically speed up equilibrium finding (&g.
and player 2 gets payoff4 in this stage since we are in state 8,9)). One avenue of future work includes identifying re-



stricted classes of games for which equilibria (or equilibria[19 Christos Papadimitriou. Algorithms, games and the In-
with certain properties) can be found fast. Another avenue
involves studying the complexity of characterizing (some of)

the equilibria of a gamgatrtially. Yet another avenue in-

cludes analyzing the computational complexity of other solu-

tion concepts from noncooperative game theory.
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