Randomized Variable Elimination

David J. Stracuzzi
Paul E. Utgoff

STRACUDJQCS.UMASS.EDU
UTGOFFQCS.UMASS.EDU

Department of Computer Science, University of Massachusetts, 140 Governor’s Drive, Amherst, MA 01003

Abstract

Variable selection, or the process of identi-
fying input variables that are relevant to a
particular learning problem, has recently re-
ceived much attention in the learning com-
munity. Methods that employ the learning
algorithm as a part of the selection process
(wrappers) have been shown to outperform
methods that select variables independent of
the learning algorithm (filters), but only at
great computational expense. We present a
randomized wrapper algorithm for variable
elimination that runs in time only a constant
factor greater than that of simply learning in
the presence of all input variables, provided
that the cost of learning grows at least poly-
nomially with the number of inputs.

1. Introduction

When learning in a supervised environment, a learn-
ing algorithm is typically presented with a set of N-
dimensional data points, along with the associated tar-
get outputs. The learning algorithm is then required to
output a hypothesis describing the function underly-
ing the data. In practice, the set of NV input variables
is carefully selected in order to improve the perfor-
mance of the learning algorithm. However, in some
cases there may be a large number of inputs available
to the learning algorithm, few of which are relevant
to the target function, with no opportunity for human
intervention. For example, feature detectors may gen-
erate a large number of features in a pattern recog-
nition task. A second possibility is that the learn-
ing algorithm itself may generate a large number of
new concepts (or functions) in terms of existing con-
cepts. Valiant (1984), Falhman and Lebiere (1990),
and Kivinen and Warmuth (1997) all present exam-
ples of algorithms that create a potentially large num-
ber of features during the learning process. In these
situations, an automatic approach to variable selection
is required.

Kohavi and John (1997) discuss an approach to finding
variables that are relevant to the target function with
respect to a given learning algorithm. Their wrap-
per model performs a best-first search in the space
of variable subsets. The search may proceed either
as a forward-selection, starting with the empty set,
or a backward-elimination, starting with the set of
all available variables. Operators in the search gener-
ally include adding or removing a single variable from
the current set, although compound operators are also
possible. Each set of variables is evaluated by running
the learning algorithm and comparing the performance
of the resulting hypotheses. Although this approach is
capable of producing a minimal set of input variables,
the cost grows exponentially in the face of many ir-
relevant variables. A greedy approach (Caruana &
Freitag, 1994) may be more practical than a best-first
search, but this may ultimately include irrelevant vari-
ables while excluding relevant variables from the final
set.

In spite of the cost, variable selection can play an im-
portant role in learning. Irrelevant variables can of-
ten degrade the performance of a learning algorithm,
particularly when data is limited. The main computa-
tional cost associated with wrapper methods for vari-
able selection is usually that of executing the learning
algorithm. The learner must produce a hypothesis for
each potential set of input variables. Even greedy se-
lection methods that ignore large areas of the search
space can produce a large number of input sets as the
number of irrelevant variables grows.

Randomized variable elimination attempts to avoid
the cost of evaluating many variable sets by taking
the largest steps possible through the space of possible
input sets. As the number of irrelevant variables in-
creases, the size of the step also increases. We present
a cost function whose purpose is to strike a balance
between the probability of failing to select successfully
a set of irrelevant variables and the cost of running
the learning algorithm many times. We use a back-
ward elimination approach to simplify the detection

of relevant variables. Removal of any relevant variable
should immediately cause the learner’s performance to
degrade.

Analysis of our cost function shows that the cost of
removing all irrelevant variables is within a constant
factor of the cost of simply learning the target func-
tion based on all N input variables, provided that
the cost of learning grows at least polynomially in
N. The bound on the complexity of our algorithm
is based on the complexity of the learning algorithm
being used. If the given learning algorithm executes
in time O(N?), then removing the N — r irrelevant
variables via randomized variable elimination also ex-
ecutes in time O(N?). This is a notable improvement
compared to the factor NV increase experienced in re-
moving inputs individually.

2. Setting

Our algorithm for randomized variable elimination
(RVE) requires a set (or sequence) of N-dimensional
vectors z; with labels y;. The learning algorithm £
is asked to produce a hypothesis h based only on the
inputs x; that have not been marked as irrelevant. We
assume that the learning algorithm may be instructed
to ignore the variables that have been marked irrele-
vant. Alternatively, we could assume the presence of a
preprocessor that removes all variables marked irrele-
vant from z;, presenting only the remaining variables
to the learning algorithm.

We make the assumption that the number r of rele-
vant variables is at least two and is small compared to
the total number of variables N. This assumption is
not critical to the functionality of the RVE algorithm;
however the benefit of using RVE increases as the ra-
tio of N to r increases. Importantly, we assume that
the number of relevant variables is known in advance,
although which variables are relevant remains hidden.
Knowledge of r is a very strong assumption in prac-
tice, as such information is not typically available. We
remove this assumption in Section 6, and present an
algorithm for guessing r while removing variables.

3. The Cost Function

Randomized variable elimination is a wrapper method
motivated by the idea that, in the presence of many
irrelevant variables, the probability of successfully se-
lecting several irrelevant variables simultaneously at
random from the set of all variables is high. The al-
gorithm computes the cost of attempting to remove k
input variables out of n total variables given that r are
relevant. A sequence of values for k is then found by

minimizing the aggregate cost of removing all N —r ir-
relevant inputs. Note that n represents the number of
remaining variables, while N denotes the total number
of variables in the original problem.

The cost function can be based on a variety of metrics,
depending on which learning algorithm is used and the
constraints of the application. Ideally, a metric would
indicate the amount of computational effort required
for the learning algorithm to produce a hypothesis. For
example, an appropriate metric for the perceptron al-
gorithm (Rosenblatt, 1958) might relate to the number
of weight updates that must be performed, while the
number of calls to the data purity criterion (e.g. infor-
mation gain (Quinlan, 1986)) may be a good metric for
decision tree induction algorithms. Sample complexity
represents a metric that can be applied to almost any
algorithm, allowing the cost function to compute the
number of instances the learner must see in order to
remove the irrelevant variables from the problem. We
do not assume a specific metric during the definition
and analysis of the cost function.

3.1 Definition

The first step of defining the cost function is to calcu-
late the probability p*(n,, k) of successfully selecting
k irrelevant inputs at random and without replace-
ment, given that there are n total and r relevant in-
puts. We define this probability as

k—1

ptnrk) =[] (%) .

=0
Applying now the negative binomial distribution, let

1—p*(n,r k)

E =
(n’T7 k) p+(nar7 k)

represent the expected number of failures at selecting
k irrelevant variables from n total given that r are rele-
vant. E~ (n,r, k) therefore yields the expected number
of trials in which at least one of the r relevant vari-
ables will be randomly selected along with irrelevant
variables prior to success.

We now define the cost of selecting and removing &
variables, given n and r. Let M(L,n) represent a
bound on the cost of running algorithm £ based on n
inputs. In the case of a perceptron, M (£, n) could rep-
resent an estimated upper bound on the number of up-
dates performed by an n-input perceptron. Assump-
tions about the nature of the learning problem should
be accounted for by the bounding function. For ex-
ample, if learning Boolean functions requires less com-
putational effort than learning real-valued functions,

then M (L,n) should include this difference. The gen-
eral cost function described below therefore need not
make any additional assumptions about the data.

In order to simplify the notation somewhat, the follow-
ing definitions and discussion assume a fixed algorithm
for £. The cost of successfully removing k variables
from n total given that r are relevant is given by

I(n,r,k) = E (n,7,k)- M(L,n—k)+ M(L,n—k)

for 1 < k < n —r. The first term in the equation
denotes the cost of failures (i.e. unsuccessful selections
of k variables) while the second denotes the cost of the
one success.

Given this cost of removing k variables, we can now de-
fine recursively the cost of removing all n —r irrelevant
variables. The goal is to minimize locally the cost of
removing k inputs with respect to the remaining cost,
resulting in a global minimum cost for removing all
n — r irrelevant variables. The use of a greedy min-
imization step relies on the assumption that M (L, n)
is monotonic in n. This is reasonable in the context
of metrics such as number of updates, number of data
purity tests, and sample complexity. Let

Iiym(n,r) = mkin(I(n,r, k) + Lsum(n — k, 1))

represent the cost (with respect to learning algorithm
L) of removing n — r irrelevant variables. The first
term in the equation represents the cost of removing
the first k£ variables while the second term represents
the cost of removing the remaining n —r — k irrelevant
variables. Note that we define Iy, (r,7) = 0.

The optimal value kope(n,r) for k given n and r can
be determined in a manner similar to computing the
cost of removing all n — r irrelevant inputs. We define

kopt(n,r) = argmkin(I(n,r, k) + Isym(n — k, 7).

3.2 Analysis

The primary benefit of this approach to variable elimi-
nation is that the combined cost (in terms of the metric
M(L,n)) of learning the target function and remov-
ing the irrelevant input variables is within a constant
factor of the cost of simply learning the target func-
tion based on all N inputs. This result assumes that
M(L,n) is at least a polynomial of degree j > 0. In
cases where M(L,n) is sub-polynomial, running the
RVE algorithm increases the cost of removing the ir-
relevant inputs by a factor of log(n) over the cost of
learning alone as shown below.

3.2.1 REMOVING MULTIPLE VARIABLES

We now show informally that the above bounds on the
performance of the RVE algorithm hold. We assume
integer division here for simplicity. First let k = 7,
which allows us to remove the minimization term from
the equation for Iy, (n,r) and reduces the number
of variables. This value of k is not necessarily the
value selected by the above equations. However, the
cost function computation is a linear program, and the
function M (L, n) is assumed monotonic. Any differ-
ences between our chosen value of & and the actual
value computed by the equations can only serve to de-

crease further the cost of the algorithm.

The probability of success p*(n,r,2) is minimized
when n = r + 1, since there is only one possible suc-
cessful selection and r possible unsuccessful selections.
This in turn maximizes the expected number of fail-
ures E~(n,r,) = r. The formula for I(n,r, k) is now
rewritten as

I(n,r, =) < (r+1)- M(L;n =),

where both M (L,n — k) terms have been combined.

The cost of removing all n — r irrelevant inputs may
now be rewritten as a summation

rlog(n) _1 i+1
Loum (n,7) < ((+1)M (c, ’))
n,r ; r n (")

The second argument to the learning algorithm’s cost
metric M denotes the number of variables used at step
i of the RVE algorithm. Notice that this number de-
creases geometrically toward r (recall that n = r is
the terminating condition for the algorithm). The log-
arithmic factor of the upper bound on the summation,

% < rlog(n), follows directly from the ge-
ometric decrease in the number of variables used at
each step of the algorithm. The linear factor r follows
from the relationship between k and r. In general, as r
increases, k decreases. Notice that as r approaches N,
RVE and our cost function degrade into testing and

removing variables individually.

Concluding the analysis, we observe that for functions
M(L,n) that are at least polynomial in n with degree
j > 0, the cost incurred by the first pass of RVE (i = 0)
will dominate the remainder of the terms. The cost of
running RVE in these cases is therefore bounded by
Tsum(n,r) < O(M(L,n)) (factors of r may be ignored
as n will always be larger). When M (£, n) is sub-linear
in n (e.g logarithmic), each pass of the algorithm will
contribute significantly to the total cost, resulting in a
bound of O(log(n)M (L, n)).

Table 1. Algorithm for computing k and cost values.
Given: L,n,r

Isym[r +1.n] <0
kopt[r +1..n) < 0

fori<~ r+1tondo
bestCost + oo
for k<~ 1toi—rdo
temp « I(i,r, k) + Isum[i — k]
if temp < bestCost then
bestCost < temp
bestK «+ k
Isym[i] < bestCost
kopt[i] < bestK

3.2.2 REMOVING VARIABLES INDIVIDUALLY

Consider now the cost of removing the n — r irrele-
vant variables one at a time (k = 1). Once again the
probability of success is minimized and the expected
number of failures is maximized at n = r + 1. The
total cost of such an approach is given by

n—r

Iiym(n,r) = Z(r +1)- M(L,n—1i).

i=1

Unlike the multiple variable removal case, the number
of variables available to the learner at each step de-
creases only arithmetically, resulting in a linear num-
ber of steps in n. The bound on the cost of RVE is
therefore Igym(n,r) < O(nM(L,n)) when k = 1. This
is true regardless of whether the variables are selected
randomly or deterministicly at each step.

3.3 Computing the Cost and k-Sequence

The equations for Isym(n,r) and kept(n,r) suggest a
simple O(n?) linear program for computing both the
cost and optimal k-sequence for a problem of n vari-
ables with r relevant. Table 1 shows an algorithm
for computing a table of cost and k values for each 4
with r +1 < 4 < n. The algorithm fills in the ta-
bles of values by starting with small values of n, and
bootstraps these to find values for increasingly large
n. The function I(n,r, k) in Table 1 is computed as
described above.

4. The Randomized Variable
Elimination Algorithm

The algorithm begins by first computing the values of
kopt(i,7) for all r + 1 < 4 < n. Next an initial hy-

Table 2. Randomized backward-elimination variable selec-
tion algorithm.

Given: L, n, r, tolerance

compute tables for Iy (i,7) and kop(i,7)
h < hypothesis produced by £ on n inputs

while n > r do
k + kopt (na T)
select k variables at random and remove them
h' < hypothesis produced by £ on n — k inputs
if e(h') — e(h) < tolerance then
n<n-—=~k
h«hn
else
replace the selected k variables

pothesis based on all n input variables is generated.
Then, at each step, the algorithm selects kopt(n,7) in-
put variables at random for removal. The learning
algorithm is trained on the remaining n — k inputs,
and a hypothesis h is produced. If the hypothesis has
improved upon the error of the previous hypothesis
(possibly within a given tolerance), then the selected
k inputs are marked as irrelevant and removed from
future consideration. Kohavi and John (1997) provide
an in depth discussion on evaluating and comparing
hypotheses based on limited data sets. If the learner
was unsuccessful, meaning the new hypothesis had a
larger error, then at least one of the selected variables
was relevant. A new set of inputs is selected and the
process repeats. The algorithm terminates when all
n — r irrelevant inputs have been removed. Table 2
shows the RVE algorithm.

5. An Application of RVE

The preceding presentation of the RVE algorithm has
remained strictly general, relying on no specific learn-
ing algorithm or cost metric. We consider now a spe-
cific example of how the randomized variable elimina-
tion algorithm may be applied to a perceptron. The
specific task examined here is to learn a Boolean func-
tion that is true when seven out of ten relevant inputs
are true, given a total of 100 input variables. In or-
der to ensure that the hypotheses generated for each
selection of variables has minimal error, we use the
thermal perceptron training algorithm (Frean, 1992).
The pocket algorithm (Gallant, 1990) is also applica-
ble, but we found this to be slower and less reliable.

Twenty problems were generated randomly with NV =

Total Updates (x10?)

50 100 150 200
Number of Input Variables

250 300 350 400 450 500

Figure 1. Plot of the cost of running RVE (Isum (N, r = 10)) along with the cost of removing inputs individually, and the

estimated number of updates M (L, N).

100 input variables, of which » = 10 are relevant. Two
data sets, each with 1000 instances, were generated in-
dependently for each problem. One data set was used
for training while the other was used to validate the
error of the hypotheses generated during each round
of selections.

The first step in applying the RVE algorithm is to
define the cost metric and the function M (L,n) for
learning on n inputs. For the perceptron, we choose
the number of weight updates as the metric. The ther-
mal perceptron anneals a temperature 7' that governs
the magnitude of the weight updates. Here we used
To = 2 and decayed the temperature at a rate of
0.999 per training epoch until T' < 0.3 (we observed no
change in the hypotheses produced by the algorithm
for T' < 0.3). Given the temperature and decay rate,
exactly 1897 training epochs are performed each time
a thermal perceptron is trained. With 1000 instances
in the training data, the cost of running the learning
algorithm is fixed at M (L£,n) = 1897000(n + 1).

Given the above formula for the number of updates
needed by an N-input perceptrons, a table of values
for Isym(n,r) and kope(n,r) can be constructed. Fig-
ure 1 plots a comparison of the computed cost of the
RVE algorithm, the cost of removing variables individ-
ually, and the estimated number of updates M (L, N)
of an N-input perceptron. The calculated cost of the
RVE algorithm maintains a linear growth rate, while
the cost of removing variables individually grows as
N? and begins to explode around 150 input variables.

This matches perfectly our analysis of the RVE and
individual removal approaches. Relationships similar
to that shown in Figure 1 arise for other values of r,
although the constant factor that separates Isym (1, r)
and M(L,n) increases as r increases.

Once the table for k,p.(n,7) has been created, the
process of selecting and removing variables can be-
gin. Since the seven-of-ten learning problem is lin-
early separable, the tolerance for comparing the new
and current hypotheses was set to near zero. A small
tolerance of 0.06 (equivalent to about 15 misclassifica-
tions) is necessary since the thermal perceptron does
not necessarily produce a minimum error hypothesis.

The RVE algorithm was run using the twenty prob-
lems described above. Hypotheses based on only ten
variables were produced in an average of 214.8 sec-
onds on a 1.13 GHz Pentium III, using an average of
5.5 x 10° weight updates. A version of the RVE al-
gorithm which removes variables individually (i.e. &
was set permanently to 1) was also run, and produced
hypotheses based on only ten variables in an average
of 443 seconds with 12.5 x 10? weight updates. The
number of weight updates required to remove all N —r
irrelevant inputs agrees with the estimate produced by
the cost function. Interestingly, both versions of the
algorithm generated hypotheses that included irrele-
vant and excluded relevant variables for three of the
test problems. All cases in which the final selection
of variables was incorrect were preceded by an initial
hypothesis (based on all 100 variables) that had un-

100

|
RVE ——

90 Individual --&--]
80 —
g 0 _
2 60 —
=
g 50 -
e
g 40 P . —
“ 30 — — .
.
20 ———— -
=
P
10 — | —
0 I I I I
0 3 6 9 12 15

Total Updates (x10°)

Figure 2. A comparison between the number of inputs on which the perceptrons are trained and the mean aggregate

number of updates performed by the perceptrons.

usually high error (error greater than 0.18 or approxi-
mately 45 mis-classified instances).

Figure 2 shows a plot of the average number of in-
puts used for each variable set size (number of inputs)
compared to the total number of weight updates. Each
marked point on the plot denotes a size of the set of
input variables given to the perceptron. The error bars
indicate the standard deviation in number of updates
required to reach that point. Every third point is plot-
ted for the individual removal algorithm. Notice both
the rate of drop in inputs, and the number of selections
(and therefore the number of hypotheses trained), for
the RVE algorithm compared to removing variables in-
dividually. This reflects the balance between the cost
of training and unsuccessful variable selections. Re-
moving variables individually in the presence of many
irrelevant variables does not account for the cost of
training each hypothesis, resulting in a total cost that
rises quickly early in the search process.

6. Choosing ¥ When r Is Unknown

The assumption that the number r of relevant vari-
ables is known has played a critical role in preceding
discussion. In practice, this is a very strong assump-
tion that is not easily met. We would like an algorithm
that can remove irrelevant attributes efficiently even
though the number of relevant variables is not known
in advance. One approach would be to simply guess a
value for r and see how RVE fares. This is unsatisfying

however, as a poor guess can destroy the efficiency of
RVE.

Guessing a single, specific value for r is a difficult task,
but placing a loose bound around maximum and min-
imum values for r may be much easier. Applications
such as pattern recognition may produce a large num-
ber of potential inputs for a simple problem because
the specific few that are actually relevant are unknown.
In such a task, the maximum value for » may be known
to be much less than N. In the worst case, r can al-
ways be bounded by 1 and N.

Given some bound on the maximum 7,,,, and mini-
mum 7,,;, values for r, a binary search for r can be
conducted during RVE’s search for relevant variables.
This relies on the idea that RVE attempts to balance
the cost of learning against the cost of selecting rel-
evant variables for removal. At each step of RVE, a
certain number of failures, E~(n,r, k), are expected.
Thus, if selecting variables for removal is too easy (i.e.
we are selecting too few variables at each step), then
the estimate for r is too high. Similarly, if selection
fails an inordinate number of times, then the estimate
for r is too low.

The choice of when to adjust r is important. The selec-
tion process must be allowed to fail a certain number
of times for each success, but allowing too many fail-
ures will decrease the efficiency of the algorithm. We
bound the number of failures by ¢; E~ (n,r, k) where
¢1 > 1is a constant. This allows for the failures pre-

100

90
80
70
60
50

40 + S
30 | ::

Number Inputs
7/

20 - f —

Total Updates (x10°)

Figure 3. A comparison between the number of inputs on which the perceptrons are trained and the aggregate number of

updates performed using the RVErS algorithm.

scribed by the cost function along with some amount
of “bad luck” in the random variable selections. The
number of consecutive successes is bounded similarly
by co(r—E~(n,r, k)) where ¢ > 0 is a constant. Since
E~(n,rk)) is at most r, the value of this expression
decreases as the expected number of failures increases.
In practice ¢; = 3 and ¢ = 0.3 appear to work well,
but more extensive tests are needed.

The algorithm for randomized variable elimination in-
cluding a binary search for r (RVErS — “reverse”)
begins by computing tables for k,p(n,r) for values of
r between 7,,;, and T,.;. Next an initial hypothe-
sis is generated and the variable selection loop begins.
The number of variables to remove at each selection
is chosen according to the current value of r. Each
time the bound on the maximum number of successful
selections is exceeded, T4, is reduced to r and r is
recalculated as TmesdTmin Similarly, when the bound
on consecutive failures is exceeded, 7,,;, is increased
to r and r is recalculated. A check is also needed to
ensure that the current number of variables never falls
below 7y, If this occurs, 7, "min and 1,4, are all set
to the current number of variables. RVErS terminates
when 7,5, and 7,4, have converged and cE~ (n,r, k)
consecutive variable selections have failed.

The RVErS algorithm was applied to the seven-of-ten
problems using the same conditions as the experiments
with RVE. Figure 3 shows a plot of the number of vari-
ables used by the perceptron compared to the average
total number of weight updates at certain times for

maz = 30, 60 and 100. The value for r,,;, was set
at 2 for all three trials. When r,,,; = 30 RVErS pro-
duces results quite similar to those of RVE, with an
average of 7.3 x 10° updates and requiring an average
of 296.7 seconds. As 1,4, increases however, the per-
formance of RVErS degrades slowly until it is roughly
the same as removing inputs individually. All three
versions found the correct variable subsets for most of
the problems. As with RVE, cases in which the initial
hypothesis had high error produced incorrect variable
subsets, including too many or too few variables.

Analysis of RVErS is complex. Although the algo-
rithm can produce good performance without finding
the exact value of r, how close the estimated value
must come to the actual value is not clear. A more im-
portant factor in determining the complexity of RVErS
is the question of how quickly the algorithm reaches a
good estimate for r. In the best case, the search for
r will settle on a good approximation of the actual
number of relevant variables quickly, and the bound
on complexity for RVE will apply. In the worst case,
the search for r will proceed slowly over values of r
that are too high, causing RVErS to behave like the
individual removal algorithm.

7. Discussion

The strength of randomized variable elimination stems
from the use of large steps in moving through the
search space of variable sets. As the number of irrel-

evant variables grows, and the probability of selecting
a relevant variable at random shrinks, RVE attempts
to take larger steps toward its goal of identifying all of
the irrelevant variables. In the face of many irrelevant
variables, this is a much easier task than attempting
to identify the relevant variables.

Consider briefly the cost of forward-selection wrapper
algorithms. In the case that the algorithm performs an
optimal search, such as best-first, the cost is ultimately
exponential in N, and clearly becomes intractable for
all but small values of N. The cost of a greedy search
is bounded by O(rNM(L,r)) for forward selection
and O(N2M (L, r)) for backward selection, provided it
does not backtrack or remove previously added vari-
ables. The cost of training each hypothesis is small in
the forward greedy approach compared to RVE, since
the number of inputs to any given hypothesis is much
smaller (bounded roughly by r). However, the number
of calls to the learning algorithm is polynomial in V.
As the number of irrelevant variables increases, even a
greedy approach to variable selection becomes quickly
unmanageable.

The Las Vegas Filter algorithm (LVF) (Liu & Setino,
1996) is an approach to variable selection in which
variable subsets are generated independently at ran-
dom during each round of execution. If the size of the
subset is smaller than the current best and has a lower
inconsistency rate, then the new subset replaces the
current best. The inconsistency rate is defined as the
total number of inconsistencies in the data (number of
instances that are equivalent given the selected vari-
ables but have different labels) divided by the total
number of instances. LVF is similar to RVE in that
both algorithms are randomized, but while LVF makes
selections totally at random (both set size and mem-
bership), RVE performs its search along a calculated
trajectory.

8. Conclusion

The randomized variable elimination algorithm uses a
two-step process to remove irrelevant input variables.
First, a sequence of values for k, the number input
variables to remove at each step, is computed such
that the cost of removing all N — r irrelevant vari-
ables is minimized. The algorithm then removes the
irrelevant variables by randomly selecting inputs for
removal according to the computed schedule. Each
step is verified by generating and testing a hypothesis
to ensure that the new hypothesis is at least as good
as the existing hypothesis. The assumption that the
number of relevant inputs r is known raises several is-
sues, but the overall result is positive. A randomized

approach to variable elimination that simultaneously
removes multiple inputs produces a factor N speed-up
over approaches that remove inputs individually.

Acknowledgments

This work was supported by NSF Grant IRI-0097218.
The authors thank Bill Hesse and Neil Immerman for
their help in analysing the general cost function. We
also thank Jen Neville for her suggestion of a binary
search when r is unknown, and Tino Tamon for helpful
comments.

References

Caruana, R., & Freitag, D. (1994). Greedy at-
tribute selection. Machine Learning: Proceedings
of the Eleventh International Conference. New
Brunswick, NJ: Morgan Kaufmann.

Fahlman, S. E., & Lebiere, C. (1990). The cascade-
correlation learning architecture. Advances in
Neural Information Processing Systems, 2, 524-
532.

Frean, M. (1992). A ”thermal” perceptron learning
rule. Neural Computation, 4, 946-957.

Gallant, S. I. (1990). Perceptron-based learning. IEEE
Transactions on Neural Networks, 1, 179-191.

Kivinen, J., & Warmuth, M. K. (1997). Additive ver-
sus exponentiated gradient updates for linear pre-
diction. Information and Computation, 132, 1-64.

Kohavi, R., & John, G. H. (1997). Wrappers for fea-
ture subset selection. Artificial Intelligence, 97,
273-324.

Liu, H., & Setino, R. (1996). A probabilistic approach
to feature selection: A filter solution. Machine
Learning: Proceedings of the Fourteenth Interna-
tional Conference. Morgan Kaufmann.

Quinlan, J. R. (1986). Induction of decision trees. Ma-
chine Learning, 1, 81-106.

Rosenblatt, F. (1958). The perceptron: A probabilistic
model for information storage and orginization in
the brain. Psychological Review, 65, 386-407.

Valiant, L. G. (1984). A theory of the learnable. Com-
munications of the ACM, 27, 1134-1142.

