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Abstract them fully when they do. Itis tacitly assumed that a composer
will present recognizable musical entitites, and devethart
We consider the problem of detecting and identifying recurin myriad ways, balancing variety with repetition. Indeed,
ring note patterns in polyphonic music. A practical algo- hoth listening satisfaction and analytical insight depend
rithm MARPLE for find finding such patterns is presented.the ability to hear and recognize note configurations or-vari
The algorithm is evaluated on sequenced MIDI files for theants that occur multiple times. This is our concern here, how
96 pieces of the two books of Bach’s Well-Tempered Clavieto find the motives and other recurring note patterns in the
Strengths and weaknesses are identified. music.
What shall we say constitutes a pattern, or a pattern that
was likely intended by the composer? At the very least, a
pattern consists of a note configuration that occurs more tha

. . . : once. A short sequence, say of two successive notes differ-
There is considerable structure in Western classical mu-

sic. We focus on the problem of identifying recurring notemg by a whole step, is likely to occur often by chance (in

. ; . classical Western music). Nevertheless, we would nagurall
patterns in polyphonic music. Patterns of notes are create oubt whether a composer thought of this as a distinctive fig-
deliberately by the composer for the benefit of the listener. P 9 9

o . o . ~"ure worthy of repetition and development. Longer note se-
Recognizing these patterns is a critical aspect of experien .
. . . : : quences that occur repeatedly are more likely to be a product
ing, understanding, and recalling a piece of music.

of design than of chance. A pattern that constitutes a theme

differs from a pattern that simply provides texture.

2 Recurring Note Patterns We have hinted that patterns of note sequences (horizon-

tally related notes) will be more distinctive than patteafs

The sounding of a note exists in time and frequency. Eonote chords (vertically related notes). This is due to tloe fa

analytical purposes, it can be convenient to consider thes@at two chords of identical harmony and identical invemsio

two dimensions spatially, giving a view of the auditory seen are often difficult to distinguish aurally. Whether one o th

However, it is critical to keep in mind that music is experi- inner voice pitches sounds at a different octave, withdet-al

enced linearly in time, and the composer writes for this moddnd the inversion, does not change the chord in any distinc-

of experience. Consider a piano roll; one can listen to it orfive manner. A composer is not likely to construct an easily

a suitable device, or inspect it visually. Whether it plesase identifiable pattern by varying inner voices within a single

the eye is irrelevant, but the ability to survey the notesdap harmony. Of course there can be patterns of harmonies that

often convenient for the analyst. make distinctive progressions, but our concern here is with
A composer takes many factors into account when Writhorizontal patterns of notes. The horizontal note pattarﬂs

ing music, which are collectively intended to achieve darta most distinctive, and we focus on how to find these automat-

effects for the listener. We shall not attempt to recouns¢he ically.

effects, nor methods for achieving them, but shall instead f

cus on just one. Listeners like to gain familiarity with the

note figures, even within a single listening, so that there i§ The Problem

pleasure both in anticipating their return, and in expeiiegp

1 Introduction

For convenience, we confine ourselves to the MIDI rep-
*Appeared inProceedings of the International Computer Music Confer- resentation of a score. Each pitch is specified by an integer
ence, pp. 487-494 index into the compass of the standard twelve tones and their




octaves, with the value 60 corresponding to middle C. Eaclthe graph for the piece. However, where are the edges? Note
note has a specified onset time and offset time. Other perfoevents are depicted in a music score, but note connectiens ar
mance features such as instrument and key velocity are noiot typically explicit. Beaming of notes with flags (typital
of use for our purposes here. Much information available ineighths and shorter) is a hint, especially in bygone days. An
a score is not available in the MIDI representation, such asrrangement of the music into parts for the performers also
rests and note beaming. gives some indication of grouping. A composer does not oth-
How can we find the recurring patterns within an accept-erwise endeavor to indicate the patterns. The idea of gngupi
able allotment of computing effort? An entirely brute-ferc notes is left to the mind’s ear (Lerdahl & Jackendoff, 1983).
approach will not work. For example, one cannot enumerat€onnecting every pair of vertices with an edge creates & larg
all the possible subsets of notes of a piece, and then collegraph that must be searched for recurring subgraphs, wich i
and count them. For a piece ohotes, there will be 2sub- intractable in general. The graph formalism offers no bénefi
sets of notes. For a piece of even moderate length, say 2,50@re.
note events, it would be infeasible either to generate aesto  The problem we have set for ourselves is:
the 2590 note subsets. Instead, it is necessary to use knowl-

edge of compositional principles to guide the search produc Given:
tively. 1. MIDI representation of a polyphonic piece
In passing, we mention two grammar-based approaches of music,

that we will not use, but that naturally come to mind. First,
in text and other string languages, grammar induction algo-
rithms and text compression algorithms repeatedly replace
commonly occurring substrings with a unique symbol, stor- Find:
ing the (symbol,substring) pair as a grammar rule. A shorter
representation, as measured by the number of bits to encode
the final string and the grammar rules, is deemed better than
a longer one because compression is achieved by exploiting
regularity (Rissanen & Langdon, 1979).

Notes are not solely sequential, except in the monophonic  The algorithm should run in a matter of minutes for modest-
case (Smith & Medina, 2001; Meek & Birmingham, 2001), sjzed pieces, e.g several thousand notes. It should iglentif
so reductions in one dimension will not be applicable. Oneyote patterns with no errors of omission (not detecting a pat
could imagine discretizing time, and then viewing the timetern that an analyst would) and few errors of commission (al-

and frequency panorama as a 2-D matrix of Boolean valfegmg a pattern that an analyst would dismiss).
ues. This would be much like using graph paper for a piano

roll. One could proceed to search for symbol strings in both
dimensions simultaneously. However, one cannot generallg Related Work
perform a string, or cell-set substitution, because a rialuc
step cannot be allowed to destroy the data type, in this case One approach s to segmentthe notes of a piece into mono-
the matrix. When starting with a matrix, one can remove aPhonic note sequences, convert the sequences to stringjs, an
row or a column, and still be left with a matrix, but removing then to apply various string matching and clustering tech-
elements that would not leave a matrix would be unaccepthiques. Several investigations have assumed that the segme
able. tation into monophonic sequences is a pre-processingtstep,
One could instead meld a 2-D group into a unit (withoutbe done by hand or by means of a separate program (Kirlin &
substitution), everywhere it occurs. Repeating this psece Utgoff, 2005). This decomposes the problem, which is often
would allow construction of grammar rules as before. Thea good idea, but it also eliminates some of the fundamental
main problem however is that a search for patterns for gramaspects of polyphonic pattern finding. For example, Buxte-
mar rules is nevertheless a search for patterns. An impohude’s fugues often contain interesting voice crossinge On
tant heuristic emerges however, which is to look for pattern can separate these into monophonic sequences only by solv-
among adjacent and otherwise connected groups of noteid the original polyphonic pattern finding problem. Human
This makes sense for music, in which the notes of a pattergxperts seem to find the patterns and the voices simultane-
need to be proximal in order to be perceived as coherent. ously because one informs the other, but we have not come
The second grammar-based approach is to employ a gragt¢ross any such system designs.

grammar. Let each note event be represented as a vertex in Of course, even with monophonic sequences, a challeng-
ing task remains. Cambouropoulos & Widmer (2002) present

2. Music drawn from the classical Western tra-
dition.

1. Apractical algorithm for detecting and iden-
tifying the motives and recurring note pat-
terns in a piece of music that were likely
intended by the composer.



a system for extracting note patterns from monophonic seyet short enough to be retained quickly and reliably. A garti
guences. They address issues related to unifying core notdar note sequence is one monophonic path through the poly-
patterns that may have differing elaborations (Lerdahlékda phonic notescape. Should an entire section that is repeated
endoff, 1983), which is critical for noticing variationsh&y  once literally count as a pattern? No, because it is too long
make use of edit distance for string matching, which helps tdo retain and because it occurs too infrequently. Simijavky
handle variations. Jan (2004) discusses searching farpatt take the liberty of ruling out a simple scale step, even tioug
using Huron’s Humdrum Toolkit. One defines a pattern byit is simple and occurs often, because it is not distinctide.
hand, in a string language, and then invokes the tool to Bearcspecific measure of pattern interest is given below.
multiple music files for portions that match, based on Unix = The second heuristicis that patterns consist of consec-
utilities for matching regular expressions. Lartillot 0  utive notes, possibly articulated with rests. This is based
2005) discusses issues regarding pattern discovery in monon the notion of sequential coherence, which was mentioned
phonic sequences from a piece of music. Rolland (2001above. A sequence that contains too large a break is not one
describes searching for patterns from monophonic seqeencesequence, but instead two (or more) shorter sequences. We
taken from muliple pieces of music. define a predicateonsecutivén, nz) of two notes that is true
Conklin (2002) presents a method for hierarchical repreif and only if the pair of notes can be considered to be con-
sentation of music objects. Multiple views can be cons&dct secutive. Two notes can be considered as consecutive if they
above the ground objects. One application is to finding patare not too distant in pitch from each other, chronologycall
terns in harmonic progressions. in order by onset time, and if the length of the silence or-over
Meredith et al (2002) map each note, in terms of its pitchlap between the two notes is small with respect to the dura-
and onset time to a point in 2-D space. Operationally theition of each of the two notes. Letn(n) indicate the onset
program works with numeric vectors, which represent ordleretime for noten, off(n) indicate the offset time for nota,
tuples of information. There is analysis of run-time comple and pitch(n) denote the MIDI pitch for note. The default
ity, with empirical validation. The discussion of pattemndi  value of the consecutiveness paramétérelow is 04, and
ing is anecdotal. The approach does not include a method fdhe default value of the pitch distance paramgtisrl2, cor-
filtering and otherwise prioritizing the “tens of thousahdé  responding to one octave. Define:
patterns that it generates. Patil & Mundur (2005) discuss an
n-gram based approach to finding note patterns in synthetic
audig data. No resullts are given, but they present a useful or(ny) < on(n) A
metric for the interestingness of a pattern. The work we de- | pitch(ny)— pitching)| <y A
scribe below is most closely related to these two approaches on(ny)— off(ny) >0 —

to finding note patterns within a polyphonic piece of music. (on(nz —0offny) _ &, ONng)— ff(n1 <) A
0”(”2 —0n(ny) Off(nz)—Off(ny)
on(ny)— off(m) <0~
off(n;)—0oN(ny) off(n;)—0N(ny)
(offin)—onny) <" offiny)-onn,) <2

consecutivény,ny) <
ng#mA

5 The MARPLE Algorithm

The MARPLE algorithm (Motives And Recurring Pat-
terns LExicon) is intended to meet the specifications desdri Define the set of all 2-grams (di-grams, synonymously bi-
above. It will be necessary to bring musical knowledge tograms)D to be the set of all possible note pairs, nj) that
bear in order to render the search for patterns feasibleh Eacatisfy the predicateonsecutivén;, n;). This set is important
such element of musical knowledge that is harnessed to guideecause it defines all possible consecutive note pairs. The
the search constitutes a heuristic, and each is descrilved heset of consecutive note sequences of greater length can be
as such. Our notion of heuristic is broad, referring to any ascomposed from these pairs, and no other note sequences need
pect of a search procedure that accelerates the searclgthroude considered. In general:
the virtual space of all possible note patterns within a giec
of music. Our description of the MARPLE algorithm pro-
ceeds by describing the heuristics that ultimately conapris
the search procedure.

The first heuristic is that the search will consider first This method of composing 2-grams to produce higher order
those sequences of length= 2, followed by the sequences k-grams is fundamental to the MARPLE algorithm.
of lengthk = 3, through increasing until no more patterns Although we have said which note sequences can be con-
are to be found. This is based on the knowledge that comsidered to be consecutive, we have defined only instances of
posers create patterns that are long enough to be dis@nctiypossible patterns. How is a pattern detected? A note sequenc

(i, j,k) consecutivén;,nj)A consecutivén;, n) —
consecutivén;, nj, ny)



the time-step lengths meaningfully. If the length of thedim
steps in one sequence is a scalar multiple of the time steps of
the other sequence, then rhythmic augmentation or diminu-
tion has been detected and can be factored out (normalized).
The stepwise comparison of frequency steps requires con-
2. Incremenk. Generate alk-grams from which the last siderable flexibility. For example, a note sequence exprkss
note of a(k— 1)-gram and the first note of a 2-gram are in a major modality, and the otherwise same sequence ap-
the same. pearing elsewhere in a minor modality, will have numerous
] stepwise pitch differences. Typically these will be juseon
3. Form the clusters that group the new instance Sep two half-steps. We shall see specific examples of tolera-
quences according to similarity. ble differences below. The similarity metric is defined here
4. Sort the clusters by size, and eliminate those smallefs & dissimilarity or distange met'ri.c. qu brevity, we detine
thanp (default 5). term(x— v) to have valug if condltlonx is true, and to have
value 0 otherwise. The distance metric can be expressed as a
5. ifk>4 sum of such terms and other expressions.
Let dfi; be the pitch difference between notendi + 1
() Compare every sequenseof lengthk to every iy sequence,, and letdf,; be the pitch difference between
sequence; of lengthk— 1. If s is a prefix ora  poteg andi+ 1 in sequencs,. Letdp bedfyi— df;, which
suffix of s;, then eliminates;. is the difference in the size of two corresponding pitch step
(b) Recluster the sequences of length1, and elim-  Define:
inate the clusters of lengt— 1 of size less than .
distancés;,s;) =

B. (common notes~ 100)+
(contrary motion— 100)+
(unequal time steps:> 100)+

7. Rank all of the clusters by the interest metric. si(ldp|>3— |dn|-2)

Thethird heuristic is to eliminate clusters of small size.
No search fofk+ 1)-grams can produce a larger cluster with
that is highly similar to another hints at a pattern. To the ex the same prefix, so there is no utility in retaining the clisste
tent that there are many similar instances, we can assert ttieat are already deemed too small to constitute a pattern of
presence of a pattern. To this end, the MARPLE algorithminterest. The minimum size for a cluster to survive elimina-
forms clusters of similar observed sequences. tion is specified by a paramet@i(default value 5) described
The clustering method simply finds an instance that doebelow.
not belong to a cluster, defines a new cluster with that imgtan It is essential to remove patterns that are subsumed by
as its prototype, and then absorbs all clusterless instahae  others (Lartillot, 2003). Suppose that there is a pattern of
are sufficiently similar to the prototype. This is repeatatlu  8-notes to be found. No less frequent will be the shorter se-
every instance belongs to a cluster. A cluster with a sufficie quences contained within it. There will be two patterns of
number of members represents a pattern. Cluster size is thength 7, three of length 6, and generdliy- 1 patterns of
count of the instances that belong to the cluster. As meation lengthm— h, wheremis the length of the pattern, amd— h
above, a pattern must be distinctive, not just abundanth@o t is the length of the sub-pattern, withe [1,m— 2.
extent that a pattern is long (the cluster’s instances ang)|o An efficient procedure for eliminating sub-patterns is de-
it is distinctive. scribed below with the algorithm, and one can view this as
Two note sequences can be compared with respect to theirfourth heuristic. It follows from the fact that if one has
corresponding pairwise time steps and pitch steps. From i hand the clusters of length then one can eliminate ex-
score, similarly a sequenced MIDI file, the indicated onsetactly those sequences of length- 1 that are subsumed by a
times occur at common multiples of the basic unit, withoutsequence of lengtk that is a member of a sufficiently large
temporal variation. A MIDI file from a human performance cluster. Only two alignments need to be considered for the
would require registering with a score, but this is beyoral th two sequences to be compared. After removing the subsumed
scope of the present discussion. Alternatively, one cocdd a sequences of lengk-1, all the sequences of lendth- 1 can
cept some variation in the time step lengths. Assuming reabe reclustered.
sonably regular onset and offset multiples, one can compare The basic MARPLE algorithm is shown in Table 1. One
refinement remains; tHdth heuristic takes advantage of the

Table 1: The MARPLE Algorithm

1. Form the set of 2-grams from all possible pairs of con
secutive notes. Sé&tto 2.

6. If clusters of lengttk remain, go to Step 2.



fact that most instances of a pattern begin at the same locaf the samek consecutive (adjacent) pitches. Such a piece
tion with respect to the measure boundaries. This constsain would containk™ possible paths through it. This is already
implemented in the distance function by adding a largekille exponential im, without having accounted for th@(n?) sub-
value of 1000 to the measured distance if the two sequencegquences within each path. Music is typically much simpler
do not commence at the same point in a measure. One cdout that takes us toward expected run-time complexity. It is
set the size of a measure, and if it differs from that specinot clear to us at the momentwhat the independent varigble(s
fied by the piece, then we would call it antificial measure  should be for such an analysis. Complexity does not seem to
Typically, an artificial measure is shorter than the true meabe related to the number of notes, but rather to the regiglarit
sure. As an extreme, one can set the length of the artificiah their arrangement.

measure to be just one beat of the shortest note or rest du-

ration in the piece, effectively disabling this constraifhis .

phase constraint among the instances of a pattern fagditat 6 An Evaluation of MARPLE

determining the meter, though this is not done by MARPLE. _ ) )

For MARPLE, one must find by hand the shortest MIDI note ~ HOow well does MARPLE work? Making this question
length for which every longer note length is a multiple, whic Precise, and then trying to answer it produces an experiment
is the greatest common divisor. Then, by hand, one sets thi/& developed MARPLE using a variety of input MID! files,

number of the shortest note lengths that constitute a me'asur 2lmost entirely from the Baroque era, and mostly by Bach,
worth of time. including his fifteen inventions. Of course it would be ugefu

The final step of the MARPLE algorithm is to sort the © cast a wider net, and this will come in time. How well does
clusters by a numeric measure of how interesting the clustd/ARPLE do on pieces from the Baroque (and before)?
is musically. The ‘interest’ of a cluster of n-grams is a sub- e decided to test MARPLE on both books of Bach's
jective measure, which we define to be the natural log of thVell-Tempered Clavier (WTC). Each contains 24 preludes

number of n-grams in the cluster times the average intere&"d fugues, for a total of 96 individual pieces. None of these
of the n-grams in the cluster. The interest of an individualP'eces had been tested with MARPLE beforehand, nor used

n-gram is a function of the variety in the stream of note du-during its development. For any given input, MARPLE will
rations and also of recency of the twelve chromatic pitcheslYPically find many patterns of interest. How often are the
More specifically, for the notes of an n-gram, there are- 1 patterns that a trained musician Woul_d find to be most §allent
consecutive pairs of notes. For each pair, add 1 to the durd®Und by MARPLE ranked equally highly? More precisely,
tion interest if the two notes of the pair are of differing du- @nd 0 avoid brittle yes/no measurements, we ask at what
rations, and add 0 otherwise. Divide the resulting sum by@nK, by MARPLE, does the most salient pattern identified
100, for scaling purposes. The pitch interest is a function oPY @ Scholar appear? For the WTC, it is not particularly dif-
the recency of a chromatic pitch. It is the natural log of theflicult to identify the main ‘theme’ of each piece. Fugues are
number of unit durations since 1 unit before the start of théP@rticularly easy due to the form. Nevertheless, we coedult
n-gram, or since the previous occurrence of that pitch in th&arlow & Morgenstern (1948) as an authority on the themes

same n-gram, whichever is more later. These computatiod8" these 96 pieces.

are restated: Table 2 shows parameter settings and the result for each of
the 96 pieces. The shortest note value in each piece is the uni
interestc) = of measure, and the number of such units defines the length
In(sizec)- _ of the artificial measure. These are the two piece-specific pa
(?:1'2(5909”@”‘3’1)” rameters, set by hand for each piece. The algorithmic param-
100" 2i—1 durdifinote, note. 1)) eters were left at their default values, as described atave,
all times.

It is not straightforward to provide a meaningful descrip- ~ The shortest note value can almost always be determined
tion of the run-time complexity of the MARPLE algorithm. DY inspection. In some cases however, such as the D minor
Run-times are typically specified in terms of input size,abhi  Fugue of Book II, the theme contains triplets. In such a case,
in this case would be the number of notes in the piece of muone needs to select a smallest unit that works for the tejaiet
sic. However, the running time of our a|gorithm relates most\Nen as the other note values. In this case, a sixteenth mote i
closely to the size and prevalence of patterns in the musi@6 ticks, and a note of a triplet is 64 ticks. The greatest com-
which may or may not be related to the number of notes. Thé&on divisor is 32,s0 the unit of measure is 32 tiCkS, which is
worst case Comp|exity of MARPLE is too pessimistic to be ofONne third of a sixteenth note, hence a 48th note. This calcula
any use. Consider an extreme piece of music that consists §Pn is done by hand.

n consecutive quarter notes of chords, each chord consisting The size of the artificial measure could be set so that the



Table 2: Experiment for Well-Tempered Clavier

Book | Book Il Book | Book Il
Prelude Prelude Fugue Fugue
No Key unit | meas| rank || unit | meas| rank || unit | meas| rank || unit | meas| rank
1| cmaj || )| 8 s |y w6 | = || N w]| 2| )] & | a
2l cmn| N 32| s | ) 16| )| 8 1| M| .| 1
3| cima | J) 1| ) — | )| &8 | 19| | 16| —r
4| Cimin || ) s | M| 2] = | )| 4 i 1
5(Dmaj || | 16 | 12 || )| 2] 1| )| 8 J} 1
6| Dmin || ) | 12| 4 | ) 1| )] o4 3| 12
7 Eemal| V| 16 6 || )| 6 70 )] 8 | 19| ) 1r
gl ®mnl| | 24| s || J| 16 |a] )] s 2 | )
9l Ema || J | 22| 2 || M| 8 |9 b | 8 | ar | )
0| Emnl| | 16| = M| 2| =1|D)] a 1| 3| 12
11| Fmaj || b | 12| 2 | ) 1] )| s 1 b | 6 | er
2| Fmn | N | 6] 1 | ) — | | s 1| ) 1
13| Fimaj || ) 9 | A —6l )| s 3 || ) 22r
14 | Femin || ) 1 [ M 26 | M| 2] 2|} 6
5 ema| S| 2] 1 || V| 4 Y|l 23| | 2] 1
6| Gmn| S| 16| s || S| 16| 3| ) | A 136r
17 | Abmaj || ) 1 3| 8 |12 ) ) 1
18| Gtmin || ) 1y .| 1|} ) 3
19 Amaj || ) 2 | Yl 2] 1| )] s 1| )| s 1
20| Amin || J} 1 b | 16 |12n|| S| 6| 2 || M| 16| 13
21 Bmaj || b | 16| — || V] 6 | = || ]| 4 s || S| 4 1
22 | Bomin || s || )| 4 1| > s | b o4 | w
23| Bmaj || J by 8 | =1 | s | 8 | 13
24| Bmin || J} 5 | )| s 1| )| s b | s 2

size of an artificial measure is exactly the size of a true measponding to the rank, by interest, at which MARPLE placed
sure. However, the purpose of having measures is to givihe main theme of the piece. Note that MARPLE finds other
notes measure position, in order to improve the efficiency ofhemes of lesser and sometimes greater interest, but itris mo
the search. If the size of the artificial measure is too largedifficult to assess these systematically. There are fowroth
some patterns will be seen as different, rather than as th&mbols shown in some of the entries of the result column.
same. For example, it is common to state a theme from &n ‘s’ means that MARPLE became computationally mired
4/4 piece half a true measure out of phase, such as in the Bue to finding seemingly very large patterns (that human ex-
major Fugue of Book 1. In the case of the C# major Preludeperts would discount). This is a rare event, one that we did
of Book I, there is a meter change from 4/4 to 3/8. The greatnot expect. The C major Prelude of Book | is well known, be-
est common divisor of 16 (4/4 is same length as 16/16) and &g a simple arpeggiation of a chord progression. The main
(3/8 is the same length as 6/16) is 2, so the artificial measurdheme was in some sense too prevalent, making myriad ways
size is 2 sixteenths. to build ever larger patterns. A *-~” means that MARPLE did
The result column of the table is usually an integer, correnot rank the designated theme among its 200 best. A ‘t’ indi-



cates that MARPLE was confused by a trill, and an ‘r’ indi- 36. Further analysis shows that this is a double fugue, with
cates that one or more rests within the theme was problematithe second subject introduced at measure 36. The second sub-

There is much to be learned from these results. The ranject is of greater interest. MARPLE also finds the first fugue
columns show a total of 20 ‘1’s for the preludes and a to-subject, but it is much less interesting, being just fouresot
tal of 27 ‘1’s for the fugues. In scoring, some interpretatio long. Second, in Fugue 15 of Book I, MARPLE identifies a
was involved because a pattern of many notes might diffeshorter repetitive wedge-shaped counter subject as mest in
by one or a few from that given in the book. There wereesting, and it is indeed highly prominent, also occurringeno
five ‘s’ and ten ‘-’ for a total of 15 (of 96) pieces in which often than the subject. The main subject is identified, kgt it
the theme was not found at all. For the remaining 34 pieceganked lower in the list.
the theme was found sometimes high in the ranked list, and Trills caused some confusion. Our initial reasoning was
sometimes far down in the list. It is tempting to repair andthat trills would not score well in terms of interest, being
improve MARPLE immediately, to eliminate many of these based on a rapid alternation of just two pitches. While this
occurrences, and these cases will be highly informative fois true, the number of trill patterns can become large bexaus
subsequent process. However, our experiment was to assaxfsthe shorter trills contained within the trill. For a tritif
MARPLE at the present, not to see how well we could adapk oscillations, there will two trills ok — 1 oscillations, three
MARPLE to a given set of inputs. trills of k — 2 oscillations, and so on. Many of these will not
be grouped together due to the constraint on measure posi-
tion. Nevertheless, MARPLE was confused by the four oc-
currences of a measure long trill. This group, consisting of
very long n-grams, scored very high in terms of interest. The
two trills of one fewer oscillation also each occurred four
times. Thus, there were a great many clusters of varying
lengths that were all subtrills.

Finally, rests were problematic. In Book II, eight of the
fugue subjects are punctuated by rests. One can tweak the
O parameter in the ‘consecutive’ predicate to make pairs of
notes that may seem distant (in time) satisfy the test for be-
ing consecutive. When this is done, many more note pairs
are admitted to the initial set of 2-grams. This causes the al

Figure 1: Prelude 24, Book Il gorithm to run much more slowly, sometimes too slowly. A
better design is needed for this thorny problem.
Figure 1 shows the cluster of occurrences of the main One can of course debate some of the musical calls by the

theme found by MARPLE for the B minor Prelude from Book authority. Two are Wo.rth mentioning. In the F# major Prelude
II. One can see by inspection of the figure that the main them@f Book Il, MARPLE finds the theme that starts at measure 4
of the prelude occurs six times, at the measure numbers irfo be prevalent and of high interest. The authority seents jus
dicated. Notice that four of the statements are in the mi{C Show the opening few measures in every case. A listener
nor modality and that two are in the major. There is a Se\,y\{ould likely fipq the later theme more noticeable, but this is
enth statement of the theme at measure 59, not included #MPly our opinion. _ _

the figure, but it ends with two quarter notes instead of four ~ Similarly, the A minor Prelude of Book Il is a duet, with
eighth notes like the others. MARPLE reports the group ofWo highly distinctive themes. MARPLE finds both themes,
seven themes earlier in its analysis, but as the n-grams p&anking one at#1 and the other at#21. The authority lists jus
come longer in the analysis, this seventh version beconoes t®n€ of the themes.

different to remain in the group. It would be useful to pro-
vide a graphical depiction of the various groups (clustass) ;
they grow, join, and split. In any case, the present output 07 Conclusions
MARPLE shows the clusters, and renders them in music no-

We addressed the problem of how to construct a practical
r?ﬂlgorithm for identifying salient note patterns in polypiho
music represented as a MIDI file. To do this, we identified
%he computational issues, and showed how knowledge of the
domain could be employed to render the search tractable. The
result is the MARPLE algorithm, implemented as a computer

how to find each instance in the original score.

Two disagreements between MARPLE and the authorit
are noteworthy. First, in Fugue 4 of Book I, MARPLE finds
a completely different prominent theme, starting at measur



program. Sufficient detail has been provided for it to be re-dLartillot, O. (2003). Discovering musical patterns thrbug
produced. We proceeded to evaluate MARPLE on asetof 96 perceptive heuristicsProceedings of the Fourth An-
specific pieces that were not used at any time for MARPLE’s  nual International Symposium on Music Information Re-
development. To our knowledge, this is the first systematic  trieval (pp. 89-96). Baltimore, MD.

analysis of this kind of pattern finder. It is important foi-sc
entific discourse and progress to make such assessments t . . . .
report specific strengths and weaknesses. Our findings are foun_ded on a modeling of listening strategi€smputer
generally that MARPLE often succeeds at its task. It runs Music Journal, 2853-67.

quickly, measured in seconds and sometimes minutes. Fofartillot, O. (2005). Efficient extraction of closed motiypat-
some pieces, in which very large patterns could be construed  terns in multi-dimensional symbolic representations of
MARPLE can become mired. MARPLE can be confused by  music. Proceedings of the International Conference on
rests that occur within a theme, and can become distracted Music Information Retrievalpp. 191-198).

by trills. Both the strengths and weaknesses of the present .
MARPLE shed light on the issues and how to direct subsek-€rdahl, F., & Jackendoff, R. (1983) generative theory of
guent inquiry. tonal music Cambridge, MA: MIT Press.

hg{tillot, O. (2004). A musical pattern discovery system

Meek, C., & Birmingham, W. P. (2001). Thematic extractor.
Proceedings of the Second Annual International Sym-
posium on Music Information Retrievgpp. 119-128).
Bloomington, IN.
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