
Detecting Motives and Recurring Patterns in Polyphonic Music∗

Paul E. Utgoff and Phillip B. Kirlin
University of Massachusetts
Amherst, MA 01003 U.S.A.

{utgoff|pkirlin}@cs.umass.edu

Abstract

We consider the problem of detecting and identifying recur-
ring note patterns in polyphonic music. A practical algo-
rithm MARPLE for find finding such patterns is presented.
The algorithm is evaluated on sequenced MIDI files for the
96 pieces of the two books of Bach’s Well-Tempered Clavier.
Strengths and weaknesses are identified.

1 Introduction

There is considerable structure in Western classical mu-
sic. We focus on the problem of identifying recurring note
patterns in polyphonic music. Patterns of notes are created
deliberately by the composer for the benefit of the listener.
Recognizing these patterns is a critical aspect of experienc-
ing, understanding, and recalling a piece of music.

2 Recurring Note Patterns

The sounding of a note exists in time and frequency. For
analytical purposes, it can be convenient to consider these
two dimensions spatially, giving a view of the auditory scene.
However, it is critical to keep in mind that music is experi-
enced linearly in time, and the composer writes for this mode
of experience. Consider a piano roll; one can listen to it on
a suitable device, or inspect it visually. Whether it pleases
the eye is irrelevant, but the ability to survey the notescape is
often convenient for the analyst.

A composer takes many factors into account when writ-
ing music, which are collectively intended to achieve certain
effects for the listener. We shall not attempt to recount these
effects, nor methods for achieving them, but shall instead fo-
cus on just one. Listeners like to gain familiarity with the
note figures, even within a single listening, so that there is
pleasure both in anticipating their return, and in experiencing

∗Appeared inProceedings of the International Computer Music Confer-
ence, pp. 487-494

them fully when they do. It is tacitly assumed that a composer
will present recognizable musical entitites, and develop them
in myriad ways, balancing variety with repetition. Indeed,
both listening satisfaction and analytical insight dependon
the ability to hear and recognize note configurations or vari-
ants that occur multiple times. This is our concern here, how
to find the motives and other recurring note patterns in the
music.

What shall we say constitutes a pattern, or a pattern that
was likely intended by the composer? At the very least, a
pattern consists of a note configuration that occurs more than
once. A short sequence, say of two successive notes differ-
ing by a whole step, is likely to occur often by chance (in
classical Western music). Nevertheless, we would naturally
doubt whether a composer thought of this as a distinctive fig-
ure worthy of repetition and development. Longer note se-
quences that occur repeatedly are more likely to be a product
of design than of chance. A pattern that constitutes a theme
differs from a pattern that simply provides texture.

We have hinted that patterns of note sequences (horizon-
tally related notes) will be more distinctive than patternsof
note chords (vertically related notes). This is due to the fact
that two chords of identical harmony and identical inversion
are often difficult to distinguish aurally. Whether one of the
inner voice pitches sounds at a different octave, without alter-
ing the inversion, does not change the chord in any distinc-
tive manner. A composer is not likely to construct an easily
identifiable pattern by varying inner voices within a single
harmony. Of course there can be patterns of harmonies that
make distinctive progressions, but our concern here is with
horizontal patterns of notes. The horizontal note patternsare
most distinctive, and we focus on how to find these automat-
ically.

3 The Problem

For convenience, we confine ourselves to the MIDI rep-
resentation of a score. Each pitch is specified by an integer
index into the compass of the standard twelve tones and their

octaves, with the value 60 corresponding to middle C. Each
note has a specified onset time and offset time. Other perfor-
mance features such as instrument and key velocity are not
of use for our purposes here. Much information available in
a score is not available in the MIDI representation, such as
rests and note beaming.

How can we find the recurring patterns within an accept-
able allotment of computing effort? An entirely brute-force
approach will not work. For example, one cannot enumerate
all the possible subsets of notes of a piece, and then collect
and count them. For a piece ofn notes, there will be 2n sub-
sets of notes. For a piece of even moderate length, say 2,500
note events, it would be infeasible either to generate or store
the 22,500 note subsets. Instead, it is necessary to use knowl-
edge of compositional principles to guide the search produc-
tively.

In passing, we mention two grammar-based approaches
that we will not use, but that naturally come to mind. First,
in text and other string languages, grammar induction algo-
rithms and text compression algorithms repeatedly replace
commonly occurring substrings with a unique symbol, stor-
ing the (symbol,substring) pair as a grammar rule. A shorter
representation, as measured by the number of bits to encode
the final string and the grammar rules, is deemed better than
a longer one because compression is achieved by exploiting
regularity (Rissanen & Langdon, 1979).

Notes are not solely sequential, except in the monophonic
case (Smith & Medina, 2001; Meek & Birmingham, 2001),
so reductions in one dimension will not be applicable. One
could imagine discretizing time, and then viewing the time
and frequency panorama as a 2-D matrix of Boolean val-
ues. This would be much like using graph paper for a piano
roll. One could proceed to search for symbol strings in both
dimensions simultaneously. However, one cannot generally
perform a string, or cell-set substitution, because a reduction
step cannot be allowed to destroy the data type, in this case
the matrix. When starting with a matrix, one can remove a
row or a column, and still be left with a matrix, but removing
elements that would not leave a matrix would be unaccept-
able.

One could instead meld a 2-D group into a unit (without
substitution), everywhere it occurs. Repeating this process
would allow construction of grammar rules as before. The
main problem however is that a search for patterns for gram-
mar rules is nevertheless a search for patterns. An impor-
tant heuristic emerges however, which is to look for patterns
among adjacent and otherwise connected groups of notes.
This makes sense for music, in which the notes of a pattern
need to be proximal in order to be perceived as coherent.

The second grammar-based approach is to employ a graph
grammar. Let each note event be represented as a vertex in

the graph for the piece. However, where are the edges? Note
events are depicted in a music score, but note connections are
not typically explicit. Beaming of notes with flags (typically
eighths and shorter) is a hint, especially in bygone days. An
arrangement of the music into parts for the performers also
gives some indication of grouping. A composer does not oth-
erwise endeavor to indicate the patterns. The idea of grouping
notes is left to the mind’s ear (Lerdahl & Jackendoff, 1983).
Connecting every pair of vertices with an edge creates a large
graph that must be searched for recurring subgraphs, which is
intractable in general. The graph formalism offers no benefit
here.

The problem we have set for ourselves is:

Given:

1. MIDI representation of a polyphonic piece
of music,

2. Music drawn from the classical Western tra-
dition.

Find:

1. A practical algorithm for detecting and iden-
tifying the motives and recurring note pat-
terns in a piece of music that were likely
intended by the composer.

The algorithm should run in a matter of minutes for modest-
sized pieces, e.g several thousand notes. It should identify
note patterns with no errors of omission (not detecting a pat-
tern that an analyst would) and few errors of commission (al-
leging a pattern that an analyst would dismiss).

4 Related Work

One approach is to segment the notes of a piece into mono-
phonic note sequences, convert the sequences to strings, and
then to apply various string matching and clustering tech-
niques. Several investigations have assumed that the segmen-
tation into monophonic sequences is a pre-processing step,to
be done by hand or by means of a separate program (Kirlin &
Utgoff, 2005). This decomposes the problem, which is often
a good idea, but it also eliminates some of the fundamental
aspects of polyphonic pattern finding. For example, Buxte-
hude’s fugues often contain interesting voice crossing. One
can separate these into monophonic sequences only by solv-
ing the original polyphonic pattern finding problem. Human
experts seem to find the patterns and the voices simultane-
ously because one informs the other, but we have not come
across any such system designs.

Of course, even with monophonic sequences, a challeng-
ing task remains. Cambouropoulos & Widmer (2002) present

a system for extracting note patterns from monophonic se-
quences. They address issues related to unifying core note
patterns that may have differing elaborations (Lerdahl & Jack-
endoff, 1983), which is critical for noticing variations. They
make use of edit distance for string matching, which helps to
handle variations. Jan (2004) discusses searching for patterns
using Huron’s Humdrum Toolkit. One defines a pattern by
hand, in a string language, and then invokes the tool to search
multiple music files for portions that match, based on Unix
utilities for matching regular expressions. Lartillot (2004,
2005) discusses issues regarding pattern discovery in mono-
phonic sequences from a piece of music. Rolland (2001)
describes searching for patterns from monophonic sequences
taken from muliple pieces of music.

Conklin (2002) presents a method for hierarchical repre-
sentation of music objects. Multiple views can be constructed
above the ground objects. One application is to finding pat-
terns in harmonic progressions.

Meredith et al (2002) map each note, in terms of its pitch
and onset time to a point in 2-D space. Operationally their
program works with numeric vectors, which represent ordered
tuples of information. There is analysis of run-time complex-
ity, with empirical validation. The discussion of pattern find-
ing is anecdotal. The approach does not include a method for
filtering and otherwise prioritizing the “tens of thousands” of
patterns that it generates. Patil & Mundur (2005) discuss an
n-gram based approach to finding note patterns in synthetic
audio data. No results are given, but they present a useful
metric for the interestingness of a pattern. The work we de-
scribe below is most closely related to these two approaches
to finding note patterns within a polyphonic piece of music.

5 The MARPLE Algorithm

The MARPLE algorithm (Motives And Recurring Pat-
terns LExicon) is intended to meet the specifications described
above. It will be necessary to bring musical knowledge to
bear in order to render the search for patterns feasible. Each
such element of musical knowledge that is harnessed to guide
the search constitutes a heuristic, and each is described here
as such. Our notion of heuristic is broad, referring to any as-
pect of a search procedure that accelerates the search through
the virtual space of all possible note patterns within a piece
of music. Our description of the MARPLE algorithm pro-
ceeds by describing the heuristics that ultimately comprise
the search procedure.

The first heuristic is that the search will consider first
those sequences of lengthk = 2, followed by the sequences
of lengthk = 3, through increasingk until no more patterns
are to be found. This is based on the knowledge that com-
posers create patterns that are long enough to be distinctive

yet short enough to be retained quickly and reliably. A partic-
ular note sequence is one monophonic path through the poly-
phonic notescape. Should an entire section that is repeated
once literally count as a pattern? No, because it is too long
to retain and because it occurs too infrequently. Similarly, we
take the liberty of ruling out a simple scale step, even though
it is simple and occurs often, because it is not distinctive.A
specific measure of pattern interest is given below.

The second heuristicis that patterns consist of consec-
utive notes, possibly articulated with rests. This is based
on the notion of sequential coherence, which was mentioned
above. A sequence that contains too large a break is not one
sequence, but instead two (or more) shorter sequences. We
define a predicateconsecutive(n1,n2) of two notes that is true
if and only if the pair of notes can be considered to be con-
secutive. Two notes can be considered as consecutive if they
are not too distant in pitch from each other, chronologically
in order by onset time, and if the length of the silence or over-
lap between the two notes is small with respect to the dura-
tion of each of the two notes. Leton(n) indicate the onset
time for noten, off(n) indicate the offset time for noten,
andpitch(n) denote the MIDI pitch for noten. The default
value of the consecutiveness parameterδ below is 0.4, and
the default value of the pitch distance parameterγ is 12, cor-
responding to one octave. Define:

consecutive(n1,n2) ↔
n1 6= n2 ∧
on(n1) ≤ on(n2) ∧
| pitch(n1)− pitch(n2)| ≤ γ ∧
on(n2)− off(n1) ≥ 0→

(
on(n2)−off(n1)
on(n2)−on(n1)

< δ ∧
on(n2)−off(n1)

off(n2)−off(n1)
< δ) ∧

on(n2)− off(n1) < 0→

(off(n1)−on(n2)

off(n1)−on(n1)
< δ ∧ off(n1)−on(n2)

off(n2)−on(n2)
< δ)

Define the set of all 2-grams (di-grams, synonymously bi-
grams)D to be the set of all possible note pairs(ni ,n j) that
satisfy the predicateconsecutive(ni,n j). This set is important
because it defines all possible consecutive note pairs. The
set of consecutive note sequences of greater length can be
composed from these pairs, and no other note sequences need
be considered. In general:

(∀i, j ,k) consecutive(ni ,n j)∧ consecutive(n j ,nk) →
consecutive(ni ,n j ,nk)

This method of composing 2-grams to produce higher order
k-grams is fundamental to the MARPLE algorithm.

Although we have said which note sequences can be con-
sidered to be consecutive, we have defined only instances of
possible patterns. How is a pattern detected? A note sequence

Table 1: The MARPLE Algorithm

1. Form the set of 2-grams from all possible pairs of con-
secutive notes. Setk to 2.

2. Incrementk. Generate allk-grams from which the last
note of a(k−1)-gram and the first note of a 2-gram are
the same.

3. Form the clusters that group the new instance se-
quences according to similarity.

4. Sort the clusters by size, and eliminate those smaller
thanβ (default 5).

5. if k≥ 4

(a) Compare every sequencesi of lengthk to every
sequencesj of lengthk−1. If sj is a prefix or a
suffix of si , then eliminatesj .

(b) Recluster the sequences of lengthk−1, and elim-
inate the clusters of lengthk−1 of size less than
β.

6. If clusters of lengthk remain, go to Step 2.

7. Rank all of the clusters by the interest metric.

that is highly similar to another hints at a pattern. To the ex-
tent that there are many similar instances, we can assert the
presence of a pattern. To this end, the MARPLE algorithm
forms clusters of similar observed sequences.

The clustering method simply finds an instance that does
not belong to a cluster, defines a new cluster with that instance
as its prototype, and then absorbs all clusterless instances that
are sufficiently similar to the prototype. This is repeated until
every instance belongs to a cluster. A cluster with a sufficient
number of members represents a pattern. Cluster size is the
count of the instances that belong to the cluster. As mentioned
above, a pattern must be distinctive, not just abundant. To the
extent that a pattern is long (the cluster’s instances are long),
it is distinctive.

Two note sequences can be compared with respect to their
corresponding pairwise time steps and pitch steps. From a
score, similarly a sequenced MIDI file, the indicated onset
times occur at common multiples of the basic unit, without
temporal variation. A MIDI file from a human performance
would require registering with a score, but this is beyond the
scope of the present discussion. Alternatively, one could ac-
cept some variation in the time step lengths. Assuming rea-
sonably regular onset and offset multiples, one can compare

the time-step lengths meaningfully. If the length of the time
steps in one sequence is a scalar multiple of the time steps of
the other sequence, then rhythmic augmentation or diminu-
tion has been detected and can be factored out (normalized).

The stepwise comparison of frequency steps requires con-
siderable flexibility. For example, a note sequence expressed
in a major modality, and the otherwise same sequence ap-
pearing elsewhere in a minor modality, will have numerous
stepwise pitch differences. Typically these will be just one
or two half-steps. We shall see specific examples of tolera-
ble differences below. The similarity metric is defined here
as a dissimilarity or distance metric. For brevity, we definea
term(x→ v) to have valuev if conditionx is true, and to have
value 0 otherwise. The distance metric can be expressed as a
sum of such terms and other expressions.

Let df1,i be the pitch difference between notesi andi +1
in sequences1, and letdf2,i be the pitch difference between
notesi andi +1 in sequences2. Let dpi bedf1,i− df2,i, which
is the difference in the size of two corresponding pitch steps.
Define:

distance(s1,s2) =
(common notes→ 100)+
(contrary motion→ 100)+
(unequal time steps→ 100)+
∑i(|dpi | > 3→ |dpi |−2)

The third heuristic is to eliminate clusters of small size.
No search for(k+1)-grams can produce a larger cluster with
the same prefix, so there is no utility in retaining the clusters
that are already deemed too small to constitute a pattern of
interest. The minimum size for a cluster to survive elimina-
tion is specified by a parameterβ (default value 5) described
below.

It is essential to remove patterns that are subsumed by
others (Lartillot, 2003). Suppose that there is a pattern of
8-notes to be found. No less frequent will be the shorter se-
quences contained within it. There will be two patterns of
length 7, three of length 6, and generallyh+ 1 patterns of
lengthm−h, wherem is the length of the pattern, andm−h
is the length of the sub-pattern, withh∈ [1,m−2].

An efficient procedure for eliminating sub-patterns is de-
scribed below with the algorithm, and one can view this as
a fourth heuristic . It follows from the fact that if one has
in hand the clusters of lengthk, then one can eliminate ex-
actly those sequences of lengthk−1 that are subsumed by a
sequence of lengthk that is a member of a sufficiently large
cluster. Only two alignments need to be considered for the
two sequences to be compared. After removing the subsumed
sequences of lengthk−1, all the sequences of lengthk−1 can
be reclustered.

The basic MARPLE algorithm is shown in Table 1. One
refinement remains; thefifth heuristic takes advantage of the

fact that most instances of a pattern begin at the same loca-
tion with respect to the measure boundaries. This constraint is
implemented in the distance function by adding a large killer
value of 1000 to the measured distance if the two sequences
do not commence at the same point in a measure. One can
set the size of a measure, and if it differs from that speci-
fied by the piece, then we would call it anartificial measure.
Typically, an artificial measure is shorter than the true mea-
sure. As an extreme, one can set the length of the artificial
measure to be just one beat of the shortest note or rest du-
ration in the piece, effectively disabling this constraint. This
phase constraint among the instances of a pattern facilitates
determining the meter, though this is not done by MARPLE.
For MARPLE, one must find by hand the shortest MIDI note
length for which every longer note length is a multiple, which
is the greatest common divisor. Then, by hand, one sets the
number of the shortest note lengths that constitute a measure’s
worth of time.

The final step of the MARPLE algorithm is to sort the
clusters by a numeric measure of how interesting the cluster
is musically. The ‘interest’ of a cluster of n-grams is a sub-
jective measure, which we define to be the natural log of the
number of n-grams in the cluster times the average interest
of the n-grams in the cluster. The interest of an individual
n-gram is a function of the variety in the stream of note du-
rations and also of recency of the twelve chromatic pitches.
More specifically, for then notes of an n-gram, there aren−1
consecutive pairs of notes. For each pair, add 1 to the dura-
tion interest if the two notes of the pair are of differing du-
rations, and add 0 otherwise. Divide the resulting sum by
100, for scaling purposes. The pitch interest is a function of
the recency of a chromatic pitch. It is the natural log of the
number of unit durations since 1 unit before the start of the
n-gram, or since the previous occurrence of that pitch in the
same n-gram, whichever is more later. These computations
are restated:

interest(c) =
ln(size(c)·
(∑n

i=1 ln(recent(pitchi))+
1

100 ·∑
n−1
i=1 durdif(notei ,notei+1))

It is not straightforward to provide a meaningful descrip-
tion of the run-time complexity of the MARPLE algorithm.
Run-times are typically specified in terms of input size, which
in this case would be the number of notes in the piece of mu-
sic. However, the running time of our algorithm relates most
closely to the size and prevalence of patterns in the music,
which may or may not be related to the number of notes. The
worst case complexity of MARPLE is too pessimistic to be of
any use. Consider an extreme piece of music that consists of
n consecutive quarter notes of chords, each chord consisting

of the samek consecutive (adjacent) pitches. Such a piece
would containkn possible paths through it. This is already
exponential inn, without having accounted for theO(n2) sub-
sequences within each path. Music is typically much simpler,
but that takes us toward expected run-time complexity. It is
not clear to us at the moment what the independent variable(s)
should be for such an analysis. Complexity does not seem to
be related to the number of notes, but rather to the regularities
in their arrangement.

6 An Evaluation of MARPLE

How well does MARPLE work? Making this question
precise, and then trying to answer it produces an experiment.
We developed MARPLE using a variety of input MIDI files,
almost entirely from the Baroque era, and mostly by Bach,
including his fifteen inventions. Of course it would be useful
to cast a wider net, and this will come in time. How well does
MARPLE do on pieces from the Baroque (and before)?

We decided to test MARPLE on both books of Bach’s
Well-Tempered Clavier (WTC). Each contains 24 preludes
and fugues, for a total of 96 individual pieces. None of these
pieces had been tested with MARPLE beforehand, nor used
during its development. For any given input, MARPLE will
typically find many patterns of interest. How often are the
patterns that a trained musician would find to be most salient
found by MARPLE ranked equally highly? More precisely,
and to avoid brittle yes/no measurements, we ask at what
rank, by MARPLE, does the most salient pattern identified
by a scholar appear? For the WTC, it is not particularly dif-
ficult to identify the main ‘theme’ of each piece. Fugues are
particularly easy due to the form. Nevertheless, we consulted
Barlow & Morgenstern (1948) as an authority on the themes
for these 96 pieces.

Table 2 shows parameter settings and the result for each of
the 96 pieces. The shortest note value in each piece is the unit
of measure, and the number of such units defines the length
of the artificial measure. These are the two piece-specific pa-
rameters, set by hand for each piece. The algorithmic param-
eters were left at their default values, as described above,at
all times.

The shortest note value can almost always be determined
by inspection. In some cases however, such as the D minor
Fugue of Book II, the theme contains triplets. In such a case,
one needs to select a smallest unit that works for the triplets as
well as the other note values. In this case, a sixteenth note is
96 ticks, and a note of a triplet is 64 ticks. The greatest com-
mon divisor is 32, so the unit of measure is 32 ticks, which is
one third of a sixteenth note, hence a 48th note. This calcula-
tion is done by hand.

The size of the artificial measure could be set so that the

Table 2: Experiment for Well-Tempered Clavier

Book I Book II Book I Book II
Prelude Prelude Fugue Fugue

No. Key unit meas rank unit meas rank unit meas rank unit meas rank

1 C maj
�� 8 s

�� 16 —
�� 16 1

�� 4 4r

2 C min
�� 32 s

�� 8 16
�� 8 1

�� 16 1

3 C♯ maj
�� 6 1

�� 2 —
�� 8 19

�� 16 —r

4 C♯ min
�� 6 8

�� 12 —
�� 4 1

�� 6 1

5 D maj
�� 16 1

�� 12 1
�� 8 6

�� 8 1

6 D min
�� 12 4

�� 4 1
�� 4 4

�� /3 12 1

7 E♭ maj
�� 16 6

�� 6 7
�� 8 19

�� 4 1r

8 E♭ min
�� 24 s

�� 16 41
�� 8 2

�� 8 1

9 E maj
�� 12 1

�� 8 159
�� 8 1r

�� 8 2

10 E min
�� 16 —

�� 12 —
�� 4 1

�� /3 12 1

11 F maj
�� 12 1

�� 4 1
�� 6 1

�� 6 6r

12 F min
�� 16 1

�� 4 —
�� 8 1

�� 4 1

13 F♯ maj
�� 6 9

�� 8 —,6
�� 8 3

�� 8 22r

14 F♯ min
�� 8 1

�� /3 12 6
�� 12 1

�� 8 6

15 G maj
�� 12 1

�� 4 1
�� 12 33

�� 12 1

16 G min
�� 16 8t

�� 16 33
�� 8 1r

�� 8 136r

17 A♭ maj
�� 4 1

�� 8 111
�� 8 6

�� 8 1

18 G♯ min
�� 6 1

�� 16 1
�� 8 1

�� 6 3

19 A maj
�� 8 2

�� 12 1
�� 6 1

�� 8 1

20 A min
�� 6 1

�� 16 1,21
�� 16 1i

�� 16 13r

21 B♭ maj
�� 16 —

�� 6 —
�� 4 s

�� 4 1

22 B♭ min
�� 8 s

�� 4 1
�� 4 14

�� 4 1r

23 B maj
�� 8 1

�� 8 —,1
�� 8 1

�� 8 13

24 B min
�� 8 55

�� 8 1
�� 8 1

�� 6 2

size of an artificial measure is exactly the size of a true mea-
sure. However, the purpose of having measures is to give
notes measure position, in order to improve the efficiency of
the search. If the size of the artificial measure is too large,
some patterns will be seen as different, rather than as the
same. For example, it is common to state a theme from a
4/4 piece half a true measure out of phase, such as in the D
major Fugue of Book II. In the case of the C# major Prelude
of Book II, there is a meter change from 4/4 to 3/8. The great-
est common divisor of 16 (4/4 is same length as 16/16) and 6
(3/8 is the same length as 6/16) is 2, so the artificial measure
size is 2 sixteenths.

The result column of the table is usually an integer, corre-

sponding to the rank, by interest, at which MARPLE placed
the main theme of the piece. Note that MARPLE finds other
themes of lesser and sometimes greater interest, but it is more
difficult to assess these systematically. There are four other
symbols shown in some of the entries of the result column.
An ‘s’ means that MARPLE became computationally mired
due to finding seemingly very large patterns (that human ex-
perts would discount). This is a rare event, one that we did
not expect. The C major Prelude of Book I is well known, be-
ing a simple arpeggiation of a chord progression. The main
theme was in some sense too prevalent, making myriad ways
to build ever larger patterns. A ‘-’ means that MARPLE did
not rank the designated theme among its 200 best. A ‘t’ indi-

cates that MARPLE was confused by a trill, and an ‘r’ indi-
cates that one or more rests within the theme was problematic.

There is much to be learned from these results. The rank
columns show a total of 20 ‘1’s for the preludes and a to-
tal of 27 ‘1’s for the fugues. In scoring, some interpretation
was involved because a pattern of many notes might differ
by one or a few from that given in the book. There were
five ‘s’ and ten ‘-’ for a total of 15 (of 96) pieces in which
the theme was not found at all. For the remaining 34 pieces,
the theme was found sometimes high in the ranked list, and
sometimes far down in the list. It is tempting to repair and
improve MARPLE immediately, to eliminate many of these
occurrences, and these cases will be highly informative for
subsequent process. However, our experiment was to assess
MARPLE at the present, not to see how well we could adapt
MARPLE to a given set of inputs.

� � � � � �� � �� � �� � �� � � �� � � � � � � � � � � � ��� �� �29 � � �

�� �25� � � � � � � � � �� � �� � �� � �� � � ��� � � � � � � � � � � ��
� � � � � � � � � � � � � �� � � � � �� � � � � � �� �� �21 � �� � � ��

�� � � ��� �� �17 �� � � � � � � � � � � �� � � � � �� � � � � � � � �
� � � � � � � � �� � � � �� � �� �� �� �5 � �� � � � � � � � � � � � ��

� � � � � � � � � � �� �� � � �� �� � � � � � � � � � � �� � �� � �� ��

Figure 1: Prelude 24, Book II

Figure 1 shows the cluster of occurrences of the main
theme found by MARPLE for the B minor Prelude from Book
II. One can see by inspection of the figure that the main theme
of the prelude occurs six times, at the measure numbers in-
dicated. Notice that four of the statements are in the mi-
nor modality and that two are in the major. There is a sev-
enth statement of the theme at measure 59, not included in
the figure, but it ends with two quarter notes instead of four
eighth notes like the others. MARPLE reports the group of
seven themes earlier in its analysis, but as the n-grams be-
come longer in the analysis, this seventh version becomes too
different to remain in the group. It would be useful to pro-
vide a graphical depiction of the various groups (clusters)as
they grow, join, and split. In any case, the present output of
MARPLE shows the clusters, and renders them in music no-
tation so that an analyst can immediately see the patterns and
how to find each instance in the original score.

Two disagreements between MARPLE and the authority
are noteworthy. First, in Fugue 4 of Book I, MARPLE finds
a completely different prominent theme, starting at measure

36. Further analysis shows that this is a double fugue, with
the second subject introduced at measure 36. The second sub-
ject is of greater interest. MARPLE also finds the first fugue
subject, but it is much less interesting, being just four notes
long. Second, in Fugue 15 of Book I, MARPLE identifies a
shorter repetitive wedge-shaped counter subject as most inter-
esting, and it is indeed highly prominent, also occurring more
often than the subject. The main subject is identified, but itis
ranked lower in the list.

Trills caused some confusion. Our initial reasoning was
that trills would not score well in terms of interest, being
based on a rapid alternation of just two pitches. While this
is true, the number of trill patterns can become large because
of the shorter trills contained within the trill. For a trillof
k oscillations, there will two trills ofk−1 oscillations, three
trills of k−2 oscillations, and so on. Many of these will not
be grouped together due to the constraint on measure posi-
tion. Nevertheless, MARPLE was confused by the four oc-
currences of a measure long trill. This group, consisting of
very long n-grams, scored very high in terms of interest. The
two trills of one fewer oscillation also each occurred four
times. Thus, there were a great many clusters of varying
lengths that were all subtrills.

Finally, rests were problematic. In Book II, eight of the
fugue subjects are punctuated by rests. One can tweak the
δ parameter in the ‘consecutive’ predicate to make pairs of
notes that may seem distant (in time) satisfy the test for be-
ing consecutive. When this is done, many more note pairs
are admitted to the initial set of 2-grams. This causes the al-
gorithm to run much more slowly, sometimes too slowly. A
better design is needed for this thorny problem.

One can of course debate some of the musical calls by the
authority. Two are worth mentioning. In the F# major Prelude
of Book II, MARPLE finds the theme that starts at measure 4
to be prevalent and of high interest. The authority seems just
to show the opening few measures in every case. A listener
would likely find the later theme more noticeable, but this is
simply our opinion.

Similarly, the A minor Prelude of Book II is a duet, with
two highly distinctive themes. MARPLE finds both themes,
ranking one at #1 and the other at #21. The authority lists just
one of the themes.

7 Conclusions

We addressed the problem of how to construct a practical
algorithm for identifying salient note patterns in polyphonic
music represented as a MIDI file. To do this, we identified
the computational issues, and showed how knowledge of the
domain could be employed to render the search tractable. The
result is the MARPLE algorithm, implemented as a computer

program. Sufficient detail has been provided for it to be re-
produced. We proceeded to evaluate MARPLE on a set of 96
specific pieces that were not used at any time for MARPLE’s
development. To our knowledge, this is the first systematic
analysis of this kind of pattern finder. It is important for sci-
entific discourse and progress to make such assessments that
report specific strengths and weaknesses. Our findings are
generally that MARPLE often succeeds at its task. It runs
quickly, measured in seconds and sometimes minutes. For
some pieces, in which very large patterns could be construed,
MARPLE can become mired. MARPLE can be confused by
rests that occur within a theme, and can become distracted
by trills. Both the strengths and weaknesses of the present
MARPLE shed light on the issues and how to direct subse-
quent inquiry.

Acknowledgements

This material is based upon work supported by the Na-
tional Science Foundation under Grant Number 0113496. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation. We thank Stephen Murtagh and Dennis Gove for
comments on a draft. The comments of the reviewers were
most helpful. The MIDI files were made available through
the Classical Music Archive.

References

Barlow, H., & Morgenstern, S. (1948).A dictionary of musi-
cal themes. New York: Crown Publishers, Inc..

Cambouropoulos, E., Crochemore, M., Iliopoulos, C.S.,
Mouchard, L., & Pinzon, Y.J. (2002). Algorithms
for computing approximate repetitions in musical se-
quences.International Journal of Computational Math-
ematics, 79, 1135-1148.

Conklin, D. (2002). Representation and discovery of verti-
cal patterns in music (pp. 32-42). In Anagnostopoulou,
Ferrand & Smaill (Eds.),Lecture Notes in Artificial In-
telligence. Springer-Verlag.

Jan, S. (2004). Meme hunting with the Humdrum Toolkit:
Principles, problems, and prospects.Computer Music
Journal, 28, 68-84.

Kirlin, P. B., & Utgoff, P. E. (2005). Learning to segregate
voices in explicit and implicit polyphony.Proceedings of
the Sixth International Conference on Music Information
Retreival(pp. 552-557).

Lartillot, O. (2003). Discovering musical patterns through
perceptive heuristics.Proceedings of the Fourth An-
nual International Symposium on Music Information Re-
trieval (pp. 89-96). Baltimore, MD.

Lartillot, O. (2004). A musical pattern discovery system
founded on a modeling of listening strategies.Computer
Music Journal, 28, 53-67.

Lartillot, O. (2005). Efficient extraction of closed motivic pat-
terns in multi-dimensional symbolic representations of
music.Proceedings of the International Conference on
Music Information Retrieval(pp. 191-198).

Lerdahl, F., & Jackendoff, R. (1983).A generative theory of
tonal music. Cambridge, MA: MIT Press.

Meek, C., & Birmingham, W. P. (2001). Thematic extractor.
Proceedings of the Second Annual International Sym-
posium on Music Information Retrieval(pp. 119-128).
Bloomington, IN.

Meredith, D., Lemström, K., & Wiggins, G.A. (2002). Algo-
rithms for discovering repeated patterns in multidimen-
sional representations of polyphonic music.Journal of
New Music Research, 31, 321-345.

Patel, N., & Mundur, P. (2005). An n-gram based approach to
finding the repeating patterns in musical data.Proceed-
ings of the European IMSA. Grindelwald, Switzerland.

Rissanen, J., & Langdon, G. G. (1979). Arithmetic coding.
IBM Journal of Research and Development, 23, 149-162.

Rolland, P.-Y. (2001). FlExPat: Flexible extraction of sequen-
tial patterns.Proceedings of the International Confer-
ence on Data Mining(pp. 481-488).

Smith, L., & Medina, R. (2001). Discovering themes by exact
pattern matching.Proceedings of the Second Annual In-
ternational Symposium on Music Information Retrieval
(pp. 31-32). Bloomington, IN.

